Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation

Abstract In this paper, we investigate a general integrable nonlocal coupled nonlinear Schrodinger (NLS) system with the parity-time (PT) symmetry, which contains not only the nonlocal self-phase modulation and the nonlocal cross-phase modulation, but also the nonlocal four-wave mixing terms. This nonlocal coupled NLS system is a nonlocal version of a coupled NLS system. The general N-th Darboux transformation for the nonlocal coupled NLS equation is constructed. By using the Darboux transformation, its soliton solutions are obtained. Dynamics and interactions of different kinds of soliton solutions are discussed.

[1]  M. Goldman,et al.  Strong turbulence of plasma waves , 1984 .

[2]  J. Nimmo,et al.  Binary Darboux transformation for the Sasa–Satsuma equation , 2015, 1502.07371.

[3]  Z. Musslimani,et al.  Theory of coupled optical PT-symmetric structures. , 2007, Optics letters.

[4]  Dorje C Brody,et al.  Faster than Hermitian quantum mechanics. , 2007, Physical review letters.

[5]  S. V. Manakov On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 1973 .

[6]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[7]  M Senthilvelan,et al.  Dark solitons, breathers, and rogue wave solutions of the coupled generalized nonlinear Schrödinger equations. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Boling Guo,et al.  Darboux transformation and classification of solution for mixed coupled nonlinear Schrödinger equations , 2014, Commun. Nonlinear Sci. Numer. Simul..

[9]  Mohammad-Ali Miri,et al.  Observation of defect states in PT-symmetric optical lattices. , 2013, Physical review letters.

[10]  Min Li,et al.  Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[12]  G. J. Roskes Some Nonlinear Multiphase Interactions , 1976 .

[13]  Vladimir E. Zakharov,et al.  To the integrability of the system of two coupled nonlinear Schrödinger equations , 1982 .

[14]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[15]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[16]  M. Senthilvelan,et al.  Generalized Darboux transformation and Nth order rogue wave solution of a general coupled nonlinear Schrödinger equations , 2014, Commun. Nonlinear Sci. Numer. Simul..

[17]  M. Ablowitz,et al.  Integrable nonlocal nonlinear Schrödinger equation. , 2013, Physical review letters.

[18]  A. Khare,et al.  Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations , 2014, 1405.5267.

[19]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[20]  M. Hassan,et al.  BINARY DARBOUX TRANSFORMATION AND QUASIDETERMINANT SOLUTIONS OF THE CHIRAL FIELD , 2011, Journal of Nonlinear Mathematical Physics.

[21]  D. J. Benney,et al.  The Propagation of Nonlinear Wave Envelopes , 1967 .

[22]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[23]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[24]  Z. Musslimani,et al.  Optical Solitons in PT Periodic Potentials , 2008 .

[25]  Boling Guo,et al.  Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations , 2013, 1309.1037.

[26]  Mohammad-Ali Miri,et al.  Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  J. Nimmo,et al.  Applications of Darboux transformations to the self-dual Yang-Mills equations , 2000 .

[28]  M. Senthilvelan,et al.  On the characterization of breather and rogue wave solutions and modulation instability of a coupled generalized nonlinear Schr\"odinger equations , 2014, 1412.6647.

[29]  Deng-Shan Wang,et al.  Integrable properties of the general coupled nonlinear Schrödinger equations , 2010 .

[30]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[31]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .