The use of ground-based GNSS for atmospheric water vapour variation study in Papua New Guinea and its response to ENSO events

. The spatial and temporal variability distribution of atmospheric water vapour in Papua New Guinea region is 10 investigated using three ground-based GNSS station datasets and are compared with radiosonde data and the ERA-Interim reanalysis to generate the atmospheric precipitable water vapour (PWV) products over PNG from 2000 to 2019. From this product, PWV variations on multiple timescales are studied, with the water vapour products of GNSS and ERA-Interim in good agreement with their large-scale changes, which is reflective of the large-scale water vapour transport. At daily periods, the diurnal amplitudes of GNSS is larger at the mainland station (3.5mm) than the two island stations (1-1.8mm). The ERA-15 Interim amplitudes are smaller than GNSS on a daily basis, and do not capture the diurnal phases correctly. The estimated long-term PWV linear trends are predominantly positive and statistically significant which is in agreement in sign to the increase in moisture expected by the Clausius-Clapeyron equation under the background of global temperature rise. In addition, the regional impact of PWV in PNG in response to the El Niño-Southern Oscillation events are analysed using a correlation analysis, focusing on the dynamic influence of the large-scale nature of the 2010-2012 Bimodal La Niña and 2015-2016 El 20 Niño events. The sea surface temperature anomaly in the Niño 3.4 and Niño 4 regions are selected to describe these two events. Both events portray overall negative correlation characteristics at the three GNSS stations with stations PNGM and RVO_ showing the strongest correlation during the 2010-2011 La Niña event significant at a 99% confidence level

[1]  O. Bousquet,et al.  Analysis of diurnal to seasonal variability of Integrated Water Vapour in the South Indian Ocean basin using ground‐based GNSS and fifth‐generation ECMWF reanalysis (ERA5) data , 2020, Quarterly Journal of the Royal Meteorological Society.

[2]  H. Lim,et al.  Variability and Trend in Integrated Water Vapour from ERA-Interim and IGRA2 Observations over Peninsular Malaysia , 2020, Atmosphere.

[3]  A. Engeln,et al.  Performance of ERA5 data in retrieving Precipitable Water Vapour over East African tropical region , 2020, Advances in Space Research.

[4]  B. Tian,et al.  Interannual variations of water vapor in the tropical upper troposphere and the lower and middle stratosphere and their connections to ENSO and QBO , 2019, Atmospheric Chemistry and Physics.

[5]  S. Panda,et al.  Spatiotemporal variability of water vapor over Turkey from GNSS observations during 2009–2017 and predictability of ERA-Interim and ARMA model , 2018 .

[6]  E. Pottiaux,et al.  Validating the water vapour content from a reanalysis product and a regional climate model over Europe based on GNSS observations , 2018 .

[7]  F. Alshawaf,et al.  On the Statistical Significance of Climatic Trends Estimated From GPS Tropospheric Time Series , 2018, Journal of Geophysical Research: Atmospheres.

[8]  Li Li,et al.  The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño–Southern Oscillation , 2018, Remote Sensing of Environment.

[9]  Wujiao Dai,et al.  Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting , 2018, Atmospheric Measurement Techniques.

[10]  Kristie L. Ebi,et al.  El Niño Southern Oscillation (ENSO) and Health: An Overview for Climate and Health Researchers , 2018, Atmosphere.

[11]  J. Robbins Rainfall characteristics and critical rainfall for landslides in Papua New Guinea , 2018 .

[12]  Jingnan Liu,et al.  A New Zenith Tropospheric Delay Grid Product for Real-Time PPP Applications over China , 2017, Sensors.

[13]  Zhiwei Zhu Breakdown of the Relationship between Australian Summer Rainfall and ENSO Caused by Tropical Indian Ocean SST Warming , 2017 .

[14]  Yidong Lou,et al.  The Use of Ground-Based GPS Precipitable Water Measurements over China to Assess Radiosonde and ERA-Interim Moisture Trends and Errors from 1999 to 2015 , 2017 .

[15]  J. Wickert,et al.  Estimating trends in atmospheric water vapor and temperature time series over Germany , 2017 .

[16]  Andrzej Araszkiewicz,et al.  EPN-Repro2: A reference GNSS tropospheric data set over Europe , 2016 .

[17]  Zhizhao Liu,et al.  Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite , 2016 .

[18]  A. Dai,et al.  Global Water Vapor Trend from 1988 to 2011 and Its Diurnal Asymmetry Based on GPS, Radiosonde, and Microwave Satellite Measurements , 2016 .

[19]  J. Wickert,et al.  Homogenized Time Series of the Atmospheric Water Vapor Content Obtained from the GNSS Reprocessed Data , 2016 .

[20]  Hilppa Gregow,et al.  User awareness concerning feedback data and input observations used in reanalysis systems , 2015 .

[21]  S. Choy,et al.  Precipitable Water Vapor Estimates in the Australian Region from Ground-Based GPS Observations , 2015 .

[22]  T. Blumenstock,et al.  Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis , 2014 .

[23]  B. Damiri,et al.  Column water vapor determination in night period with a lunar photometer prototype , 2013 .

[24]  Lixin Wu,et al.  Modes and Mechanisms of Global Water Vapor Variability over the Twentieth Century , 2013 .

[25]  A. Dai,et al.  Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data , 2013 .

[26]  Jonathan H. Jiang,et al.  Tropical Clouds and Circulation Changes during the 2006/07 and 2009/10 El Niños , 2013 .

[27]  Gunnar Elgered,et al.  Trends in the Atmospheric Water Vapor Content From Ground-Based GPS: The Impact of the Elevation Cutoff Angle , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[28]  W. Suparta,et al.  Monitoring of GPS water vapor variability during ENSO events over the Borneo region , 2012 .

[29]  Russell S. Vose,et al.  The Definition of the Standard WMO Climate Normal: The Key to Deriving Alternative Climate Normals , 2011 .

[30]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[31]  Andrew E. Dessler,et al.  Trends in tropospheric humidity from reanalysis systems , 2010 .

[32]  P. Salio,et al.  Estimation of precipitable water vapour from GPS measurements in Argentina: Validation and qualitative analysis of results , 2010 .

[33]  Peter Steigenberger,et al.  Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade. , 2010 .

[34]  P. Steigenberger,et al.  On the homogeneity and interpretation of precipitable water time series derived from global GPS observations , 2009 .

[35]  Claude N. Williams,et al.  Radiosonde‐based trends in precipitable water over the Northern Hemisphere: An update , 2009 .

[36]  Junhong Wang,et al.  Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products , 2009 .

[37]  Yehuda Bock,et al.  Development of data infrastructure to support scientific analysis for the International GNSS Service , 2009 .

[38]  Jingnan Liu,et al.  Recent development of PANDA software in GNSS data processing , 2008, International Conference on Earth Observation for Global Changes.

[39]  Junhong Wang,et al.  Systematic Errors in Global Radiosonde Precipitable Water Data from Comparisons with Ground-Based GPS Measurements , 2008 .

[40]  S. Jade,et al.  GPS‐based atmospheric precipitable water vapor estimation using meteorological parameters interpolated from NCEP global reanalysis data , 2008 .

[41]  Jean-Noël Thépaut,et al.  Analysis and forecast impact of the main humidity observing systems , 2007 .

[42]  Junhong Wang,et al.  A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements , 2007 .

[43]  M. Bouin,et al.  Multiscale analysis of precipitable water vapor over Africa from GPS data and ECMWF analyses , 2007 .

[44]  Peter Steigenberger,et al.  Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas , 2007 .

[45]  H. Schuh,et al.  Short Note: A global model of pressure and temperature for geodetic applications , 2007 .

[46]  Peter Steigenberger,et al.  Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients , 2007 .

[47]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[48]  Richard P. Allan,et al.  Water vapor variability in the tropics and its links to dynamics and precipitation , 2005 .

[49]  Junhong Wang,et al.  Global estimates of water‐vapor‐weighted mean temperature of the atmosphere for GPS applications , 2005 .

[50]  Steffen Beirle,et al.  El Niño induced anomalies in global data sets of total column precipitable water and cloud cover derived from GOME on ERS‐2 , 2005 .

[51]  Kevin E. Trenberth,et al.  Trends and variability in column-integrated atmospheric water vapor , 2005 .

[52]  M. Ringer,et al.  Simulation of the Earth's radiation budget by the European Centre for Medium-Range Weather Forecasts 40-year reanalysis (ERA40) , 2004 .

[53]  R. Lu,et al.  The 1997/98 El Niño: A test for climate models , 2004 .

[54]  John R. Christy,et al.  Uncertainty in Signals of Large-Scale Climate Variations in Radiosonde and Satellite Upper-Air Temperature Datasets , 2004 .

[55]  B. Soden,et al.  Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model , 2004 .

[56]  Henrik Vedel,et al.  Impact of Ground Based GPS Data on Numerical Weather Prediction , 2004 .

[57]  Hajime Nakamura,et al.  Dry Biases of Humidity Measurements from the Vaisala RS80-A and Meisei RS2-91 Radiosondes and from Ground-Based GPS , 2004 .

[58]  K. Trenberth,et al.  The changing character of precipitation , 2003 .

[59]  Fujio Kimura,et al.  Diurnal Variation of Precipitable Water over a Mountainous Area of Sumatra Island , 2003 .

[60]  Richard H. Johnson,et al.  Corrected TOGA COARE Sounding Humidity Data: Impact on Diagnosed Properties of Convection and Climate over the Warm Pool , 2003 .

[61]  Mark A. Bourassa,et al.  A Quantitative Evaluation of ENSO Indices , 2003 .

[62]  David Carlson,et al.  Corrections of Humidity Measurement Errors from the Vaisala RS80 Radiosonde—Application to TOGA COARE Data , 2002 .

[63]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[64]  Junhong Wang,et al.  Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity , 2002 .

[65]  Alan Robock,et al.  Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. , 2002, Science.

[66]  Alan Dodson,et al.  Ground-based GPS water vapour estimation: potential for meteorological forecasting , 2001 .

[67]  J. Slingo,et al.  The Diurnal Cycle in the Tropics , 2001 .

[68]  W. Elliott,et al.  Radiosonde-Based Northern Hemisphere Tropospheric Water Vapor Trends , 2001 .

[69]  Y. Bar-Sever,et al.  El Niño, water vapor, and the global positioning system , 2000 .

[70]  R. Pierrehumbert,et al.  Climate change and the tropical Pacific: the sleeping dragon wakes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[71]  B. Soden The Sensitivity of the Tropical Hydrological Cycle to ENSO , 2000 .

[72]  J. Wallace,et al.  On the structure and evolution of ENSO‐related climate variability in the tropical Pacific: Lessons from TOGA , 1998 .

[73]  Jan M. Johansson,et al.  Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers , 1998 .

[74]  Timothy J. Hoar,et al.  El Niño and climate change , 1997 .

[75]  Jan M. Johansson,et al.  Measuring regional atmospheric water vapor using the Swedish Permanent GPS Network , 1997 .

[76]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .

[77]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[78]  Fuzhong Weng,et al.  An eight-year (1987-1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements , 1996 .

[79]  Thomas C. Peterson,et al.  A new method for detecting undocumented discontinuities in climatological time series , 1995 .

[80]  P. R. Julian,et al.  Observations of the 40-50-day tropical oscillation - a review , 1994 .

[81]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[82]  W. Elliott,et al.  On the Utility of Radiosonde Humidity Archives for climate studies , 1991 .

[83]  D. Starr,et al.  The role of water vapor in climate. A strategic research plan for the proposed GEWEX water vapor project (GVaP) , 1991 .

[84]  A. Hall Hydrology in tropical Australia and Papua New Guinea , 1984 .

[85]  W. M. Gray,et al.  Diurnal Variation of Deep Cumulus Convection , 1977 .

[86]  J. Saastamoinen Contributions to the theory of atmospheric refraction , 1972 .

[87]  C. S. Ramage ROLE OF A TROPICAL "MARITIME CONTINENT" IN THE ATMOSPHERIC CIRCULATION , 1968 .

[88]  F. Gaol,et al.  GPS PWV and Its Response to ENSO Activities in the Western Pacific Region During 2009–2011 , 2018 .

[89]  A. Jemain,et al.  over Peninsular Malaysia , 2008 .

[90]  Russell S. Vose,et al.  Overview of the Integrated Global Radiosonde Archive , 2006 .

[91]  V. Sharpe,et al.  Competing interests , 2003, Nature Biotechnology.

[92]  S. Clough,et al.  Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience , 2003 .

[93]  Gunnar Elgered,et al.  Climate monitoring using GPS , 2002 .

[94]  Kyu-Dae Cho,et al.  The relationship between ENSO events and sea surface temperature in the East (Japan) Sea , 2001 .

[95]  Yuei-An Liou,et al.  Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes , 2001 .

[96]  Junhong Wang,et al.  Correction for Dry Bias in Vaisala Radiosonde RH Data , 1999 .

[97]  W. I. Bertiger,et al.  Effects of antenna orientation on GPS carrier phase , 1993, manuscripta geodaetica.

[98]  Richard W. Reynolds,et al.  A Real-Time Global Sea Surface Temperature Analysis , 1988 .

[99]  R. Falls,et al.  Climate of Papua New Guinea , 1983 .

[100]  R. Forthofer,et al.  Rank Correlation Methods , 1981 .