Novel receptors for bacterial protein toxins.

[1]  Samuel Wagner,et al.  Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. , 2014, Annual review of microbiology.

[2]  Peter C. Fineran,et al.  CRISPR–Cas systems: beyond adaptive immunity , 2014, Nature Reviews Microbiology.

[3]  T. Brummelkamp,et al.  LRP1 is a receptor for Clostridium perfringens TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins , 2014, Proceedings of the National Academy of Sciences.

[4]  S. B. Peterson,et al.  Type VI secretion system effectors: poisons with a purpose , 2014, Nature Reviews Microbiology.

[5]  H. Stahlberg,et al.  Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence , 2014, Proceedings of the National Academy of Sciences.

[6]  A. Schlosser,et al.  Lu/BCAM Adhesion Glycoprotein Is a Receptor for Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1) , 2014, PLoS pathogens.

[7]  D. Gerding,et al.  Clostridium difficile binary toxin CDT , 2013, Gut microbes.

[8]  J. Bubeck Wardenburg,et al.  Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue , 2013, Toxins.

[9]  K. Kaur,et al.  Structure and biophysics of type III secretion in bacteria. , 2013, Biochemistry.

[10]  D. Baker,et al.  Atomic model of the type III secretion system needle , 2012, Nature.

[11]  K. Aktories,et al.  Molecular Characteristics of Clostridium perfringens TpeL Toxin and Consequences of Mono-O-GlcNAcylation of Ras in Living Cells* , 2012, The Journal of Biological Chemistry.

[12]  K. Aktories,et al.  Identification of the Cellular Receptor of Clostridium spiroforme Toxin , 2012, Infection and Immunity.

[13]  R. Spooner,et al.  How ricin and Shiga toxin reach the cytosol of target cells: retrotranslocation from the endoplasmic reticulum. , 2012, Current topics in microbiology and immunology.

[14]  G. Bell,et al.  Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT) , 2011, Proceedings of the National Academy of Sciences.

[15]  I. Inoshima,et al.  A Staphylococcus aureus Pore-Forming Toxin Subverts the Activity of ADAM10 to Cause Lethal Infection , 2011, Nature Medicine.

[16]  Johannes Buchner,et al.  Membrane Translocation of Binary Actin-ADP-Ribosylating Toxins from Clostridium difficile and Clostridium perfringens Is Facilitated by Cyclophilin A and Hsp90 , 2011, Infection and Immunity.

[17]  Y. Colin,et al.  Novel role for the Lu/BCAM-spectrin interaction in actin cytoskeleton reorganization. , 2011, The Biochemical journal.

[18]  P. Saftig,et al.  The "A Disintegrin And Metalloproteases" ADAM10 and ADAM17: novel drug targets with therapeutic potential? , 2011, European journal of cell biology.

[19]  H. Sasaki,et al.  LSR defines cell corners for tricellular tight junction formation in epithelial cells , 2011, Journal of Cell Science.

[20]  K. Sandvig,et al.  Endocytosis and retrograde transport of Shiga toxin. , 2010, Toxicon : official journal of the International Society on Toxinology.

[21]  G. Waksman,et al.  Molecular architecture of bacterial type IV secretion systems. , 2010, Trends in biochemical sciences.

[22]  K. Miyamoto,et al.  Clostridium perfringens TpeL Glycosylates the Rac and Ras Subfamily Proteins , 2010, Infection and Immunity.

[23]  Y. Colin,et al.  Role of Lu/BCAM glycoproteins in red cell diseases. , 2010, Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine.

[24]  J. B. Wardenburg,et al.  Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin–mediated cellular injury , 2010, Proceedings of the National Academy of Sciences.

[25]  Karla J. F. Satchell,et al.  Inositol Hexakisphosphate-Induced Autoprocessing of Large Bacterial Protein Toxins , 2010, PLoS pathogens.

[26]  R. Gilbert Cholesterol-dependent cytolysins. , 2010, Advances in experimental medicine and biology.

[27]  R. Collier Membrane translocation by anthrax toxin. , 2009, Molecular aspects of medicine.

[28]  Carla P. Guimarães,et al.  Haploid Genetic Screens in Human Cells Identify Host Factors Used by Pathogens , 2009, Science.

[29]  J. Wehland,et al.  Clostridium difficile Toxin CDT Induces Formation of Microtubule-Based Protrusions and Increases Adherence of Bacteria , 2009, PLoS pathogens.

[30]  K. Aktories,et al.  Structure and mode of action of clostridial glucosylating toxins: the ABCD model. , 2008, Trends in microbiology.

[31]  Klaus Aktories,et al.  Auto-catalytic Cleavage of Clostridium difficile Toxins A and B Depends on Cysteine Protease Activity* , 2007, Journal of Biological Chemistry.

[32]  A. O’Brien,et al.  Two Domains of Cytotoxic Necrotizing Factor Type 1 Bind the Cellular Receptor, Laminin Receptor Precursor Protein , 2007, Infection and Immunity.

[33]  John A. Young,et al.  Anthrax toxin: receptor binding, internalization, pore formation, and translocation. , 2007, Annual review of biochemistry.

[34]  Karla J. F. Satchell,et al.  Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain , 2007, The EMBO journal.

[35]  M. Shimizu,et al.  A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. , 2007, Microbiology.

[36]  S. Tenzer,et al.  Autocatalytic cleavage of Clostridium difficile toxin B , 2007, Nature.

[37]  J. Friedman,et al.  Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system , 2006, Molecular microbiology.

[38]  Hans Wolf-Watz,et al.  Protein delivery into eukaryotic cells by type III secretion machines , 2006, Nature.

[39]  N. Hellmann,et al.  Evidence That Clustered Phosphocholine Head Groups Serve as Sites for Binding and Assembly of an Oligomeric Protein Pore* , 2006, Journal of Biological Chemistry.

[40]  Stuart Johnson,et al.  An epidemic, toxin gene-variant strain of Clostridium difficile. , 2005, The New England journal of medicine.

[41]  G. Cornelis,et al.  Type III secretion: the bacteria-eukaryotic cell express. , 2005, FEMS microbiology letters.

[42]  P. Gane,et al.  Protein Kinase A-dependent Phosphorylation of Lutheran/Basal Cell Adhesion Molecule Glycoprotein Regulates Cell Adhesion to Laminin α5* , 2005, Journal of Biological Chemistry.

[43]  J. Ballard,et al.  Clostridium difficile Toxins: Mechanism of Action and Role in Disease , 2005, Clinical Microbiology Reviews.

[44]  M. Landry,et al.  Distribution of the lipolysis stimulated receptor in adult and embryonic murine tissues and lethality of LSR-/- embryos at 12.5 to 14.5 days of gestation. , 2004, European journal of biochemistry.

[45]  C. Hoffmann,et al.  CNF and DNT. , 2004, Reviews of physiology, biochemistry and pharmacology.

[46]  Dirk Tiemann,et al.  The Host Cell Chaperone Hsp90 Is Essential for Translocation of the Binary Clostridium botulinum C2 Toxin into the Cytosol* , 2003, Journal of Biological Chemistry.

[47]  T. Dawson,et al.  37-kDa Laminin Receptor Precursor Modulates Cytotoxic Necrotizing Factor 1–mediated RhoA Activation and Bacterial Uptake* , 2003, The Journal of Biological Chemistry.

[48]  M. McComb,et al.  The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex , 2003, Journal of Cell Biology.

[49]  G. Cornelis The Yersinia Ysc–Yop 'Type III' weaponry , 2002, Nature Reviews Molecular Cell Biology.

[50]  P. Boquet The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. , 2001, Toxicon : official journal of the International Society on Toxinology.

[51]  K. Aktories,et al.  Characterization of the Enzymatic Component of the ADP-Ribosyltransferase Toxin CDTa from Clostridium difficile , 2001, Infection and Immunity.

[52]  D. Strickland,et al.  LRP: a multifunctional scavenger and signaling receptor. , 2001, The Journal of clinical investigation.

[53]  J. Galán,et al.  Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  P. Gane,et al.  The Lutheran Blood Group Glycoproteins, the Erythroid Receptors for Laminin, Are Adhesion Molecules* , 1998, The Journal of Biological Chemistry.

[55]  C. Fiorentini,et al.  Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine , 1997, Nature.

[56]  M. Mann,et al.  Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1 , 1997, Nature.

[57]  G. Corthier,et al.  Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196 , 1997, Infection and immunity.

[58]  T. Willnow,et al.  The low-density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro. , 1996, The Biochemical journal.

[59]  M. Mann,et al.  Glucosylation of Rho proteins by Clostridium difficile toxin B , 1995, Nature.

[60]  E. Kuechler,et al.  Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[61]  V. Bordeau,et al.  Identification of a lipolysis-stimulated receptor that is distinct from the LDL receptor and the LDL receptor-related protein. , 1994, Biochemistry.

[62]  D. Strickland,et al.  The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. , 1992, The Journal of biological chemistry.

[63]  S Bhakdi,et al.  Alpha-toxin of Staphylococcus aureus. , 1991, Microbiological reviews.

[64]  K. Sandvig,et al.  Diphtheria toxin entry into cells is facilitated by low pH , 1980, The Journal of cell biology.

[65]  P. Cassidy,et al.  The Binding of Staphylococcal 125I-α-Toxin (B) to Erythrocytes , 1973 .