Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: Effect of local saturation and application to macroscopic continuum models

Abstract Macroscopic continuum models are an essential tool to understand the complex transport phenomena that take place in gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs). Previous work has shown that macroscopic models require effective properties obtained under uniform saturation conditions to get a consistent physical formulation. This issue, mostly unappreciated in the open literature, is addressed in detail in this work. To this end, lattice Boltzmann simulations were performed on tomographic images of dry and water-invaded carbon-paper GDL subsamples with nearly uniform porosity and saturation distributions. The computed effective diffusivity shows an anisotropic dependence on local porosity similar to that reported for morphologically analogous GDLs. In contrast, the dependence on local saturation is rather isotropic, following a nearly quadratic power law. The capability of the local correlations to recover the layer-scale properties obtained from inhomogeneous GDLs is checked by global averaging. Good agreement is found between the upscaled results and the diffusivity data of the GDL from which the present subsamples were taken, as well as other global data presented in the literature. A higher blockage effect of local saturation is, however, expected for the under-the-rib region in operating PEFCs.

[1]  Alexander Wokaun,et al.  Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC , 2008 .

[2]  A. Iranzo,et al.  A novel approach coupling neutron imaging and numerical modelling for the analysis of the impact of water on fuel cell performance , 2014 .

[3]  Michael J. Martínez,et al.  Measurement of MacMullin Numbers for PEMFC Gas-Diffusion Media , 2009 .

[4]  Rui Chen,et al.  Influence of threshold variation on determining the properties of a polymer electrolyte fuel cell gas diffusion layer in X-ray nano-tomography , 2010 .

[5]  Y. Utaka,et al.  Precise measurement of effective oxygen diffusivity for microporous media containing moisture by review of galvanic cell oxygen absorber configuration , 2014 .

[6]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .

[7]  Jin Hyun Nam,et al.  Liquid water distribution in hydrophobic gas-diffusion layers with interconnect rib geometry: An invasion-percolation pore network analysis , 2014 .

[8]  Xianguo Li,et al.  Correlation for the Effective Gas Diffusion Coefficient in Carbon Paper Diffusion Media , 2009 .

[9]  P. Rama,et al.  Determination of the anisotropic permeability of a carbon cloth gas diffusion layer through X‐ray computer micro‐tomography and single‐phase lattice Boltzmann simulation , 2011 .

[10]  S. H. Kim,et al.  Reconstruction and Effective Transport Properties of the Catalyst Layer in PEM Fuel Cells , 2009 .

[11]  Immaculada Iglesias,et al.  Modeling of the anode of a liquid-feed DMFC: Inhomogeneous compression effects and two-phase transport phenomena , 2014 .

[12]  Ahmet Kusoglu,et al.  A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells , 2014 .

[13]  Chao-Yang Wang,et al.  Measurement of relative permeability of fuel cell diffusion media , 2010 .

[14]  U. Stimming,et al.  Analysis of the diffusive mass transport in the anode side porous backing layer of a direct methanol fuel cell , 2009 .

[15]  Kazuhiko Suga,et al.  An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model , 2007 .

[16]  J. Yablecki,et al.  Effect of Liquid Water Presence on PEMFC GDL Effective Thermal Conductivity , 2012 .

[17]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[18]  Mark Pritzker,et al.  Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells , 2007 .

[19]  Xianguo Li,et al.  Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell , 2007 .

[20]  J. Yablecki,et al.  Modeling the Effective Thermal Conductivity of an Anisotropic Gas Diffusion Layer in a Polymer Electrolyte Membrane Fuel Cell , 2011 .

[21]  Douglas J. Nelson,et al.  Fuel cell systems: efficient, flexible energy conversion for the 21st century , 2001, Proc. IEEE.

[22]  Pietro Asinari,et al.  Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells , 2014, Comput. Math. Appl..

[23]  A. Weber,et al.  Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: effect of through-plane saturation distribution , 2015 .

[24]  Rui Chen,et al.  An X-Ray Tomography Based Lattice Boltzmann Simulation Study on Gas Diffusion Layers of Polymer Electrolyte Fuel Cells , 2010 .

[25]  Nicos Martys,et al.  Diffusion in partially-saturated porous materials , 1999 .

[26]  S. Kjelstrup,et al.  Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell , 2010 .

[27]  Q. Zou,et al.  On pressure and velocity boundary conditions for the lattice Boltzmann BGK model , 1995, comp-gas/9611001.

[28]  S. V. Sotirchos,et al.  Ordinary and transition regime diffusion in random fiber structures , 1993 .

[29]  Jon G. Pharoah,et al.  Determination of permeability in fibrous porous media using the lattice Boltzmann method with application to PEM fuel cells , 2009 .

[30]  Andreas Wiegmann,et al.  Numerical Determination of Two-Phase Material Parameters of a Gas Diffusion Layer Using Tomography Images , 2008 .

[31]  Mark Pritzker,et al.  On the role of the microporous layer in PEMFC operation , 2009 .

[32]  Andreas Wiegmann,et al.  Effect of liquid water on transport properties of the gas diffusion layer of polymer electrolyte mem , 2011 .

[33]  Jin Hyun Nam,et al.  Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium , 2003 .

[34]  Adam Z. Weber,et al.  Probing water distribution in compressed fuel-cell gas-diffusion layers using X-ray computed tomography , 2015 .

[35]  S. Kandlikar,et al.  Determination of effective water vapor diffusion coefficient in pemfc gas diffusion layers , 2011 .

[36]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[37]  J. Jiménez,et al.  Boltzmann Approach to Lattice Gas Simulations , 1989 .

[38]  Rui Chen,et al.  An Improved MRT Lattice Boltzmann Model for Calculating Anisotropic Permeability of Compressed and Uncompressed Carbon Cloth Gas Diffusion Layers Based on X-Ray Computed Micro-Tomography , 2012 .

[39]  F. Marone,et al.  Investigation of the Representative Area of the Water Saturation in Gas Diffusion Layers of Polymer Electrolyte Fuel Cells , 2013 .

[40]  Chaoyang Wang,et al.  Modeling of Two-Phase Behavior in the Gas Diffusion Medium of PEFCs via Full Morphology Approach , 2007 .

[41]  Z. Fishman,et al.  Microscale Tomography Investigations of Heterogeneous Porosity Distributions of PEMFC GDLs , 2010 .

[42]  Aimy Bazylak,et al.  Condensation in PEM Fuel Cell Gas Diffusion Layers: A Pore Network Modeling Approach , 2010 .

[43]  Ramón Zaera,et al.  Nonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers , 2011 .

[44]  Adam Z. Weber,et al.  Effects of Microporous Layers in Polymer Electrolyte Fuel Cells , 2005 .

[45]  Chao-Yang Wang,et al.  Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells , 2004 .

[46]  Liang Hao,et al.  Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers , 2009 .

[47]  Aydin Nabovati,et al.  A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method , 2009 .

[48]  Volker Schmidt,et al.  3D analysis, modeling and simulation of transport processes in compressed fibrous microstructures, using the Lattice Boltzmann method , 2013 .

[49]  Qisu Zou,et al.  N ov 1 99 6 On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model , 2008 .

[50]  Jeff T. Gostick,et al.  Random Pore Network Modeling of Fibrous PEMFC Gas Diffusion Media Using Voronoi and Delaunay Tessellations , 2013 .

[51]  W. Chiu,et al.  Application of an Effective Medium Formulation to Account for Transport Due to Fiber and Web-like Inclusions in Gas Diffusion Layers , 2015 .

[52]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[53]  M. Vera,et al.  On the effects of assembly compression on the performance of liquid-feed DMFCs under methanol-limiting conditions: A 2D numerical study , 2015 .

[54]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[55]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[56]  Xianguo Li,et al.  Multi-phase micro-scale flow simulation in the electrodes of a PEM fuel cell by lattice Boltzmann method , 2008 .

[57]  J. Gostick,et al.  A method for measuring in-plane effective diffusivity in thin porous media , 2015 .

[58]  A. Weber,et al.  Effective-Diffusivity Measurement of Partially-Saturated Fuel-Cell Gas-Diffusion Layers , 2012 .

[59]  Chao-Yang Wang,et al.  Fundamental models for fuel cell engineering. , 2004, Chemical reviews.

[60]  M. Mench,et al.  Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells , 2014 .

[61]  F. Marone,et al.  Progress in In Situ X-Ray Tomographic Microscopy of Liquid Water in Gas Diffusion Layers of PEFC , 2011 .

[62]  Liang Hao,et al.  Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method , 2010 .

[63]  T. Nguyen,et al.  An Experimental Study of Relative Permeability of Porous Media Used in Proton Exchange Membrane Fuel Cells , 2010 .

[64]  Rui Chen,et al.  Modeling Fluid Flow in the Gas Diffusion Layers in PEMFC Using the Multiple Relaxation‐time Lattice Boltzmann Method , 2012 .

[65]  C. Amon,et al.  Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells , 2014 .

[66]  F. Büchi,et al.  Saturation Dependent Effective Transport Properties of PEFC Gas Diffusion Layers , 2012 .

[67]  Wayne Moore,et al.  Effect of Pore Structure, Randomness and Size on Effective Mass Diffusivity , 2002 .

[68]  Koji Moriyama,et al.  An approach to modeling two-phase transport in the gas diffusion layer of a proton exchange membrane fuel cell , 2008 .

[69]  Adam Z. Weber,et al.  Liquid-Water Interactions with Gas-Diffusion-Layer Surfaces , 2014 .

[70]  Xianguo Li,et al.  Effective transport properties for polymer electrolyte membrane fuel cells – With a focus on the gas diffusion layer , 2013 .