A new integrative data mining framework for analyzing the cancer genome atlas data

Besides accuracy and efficiency, understandability is another key issue of predictive modeling in real-world applications, especially in biomedical and healthcare data analysis. We develop a new integrative framework to enhance the interpretability of data by sparsity-based learning. We proposed several novel sparsity-based learning models, emphasizing different understandable properties of data, such as explicit sparsity, low redundancy, and low rank, and apply to The Cancer Genome Atlas (TCGA) data analysis. Results indicate that the proposed methods provide more insights from TCGA data while maintaining stable and competitive performances in predictive modeling. To further enhance the interpretability of biological processes and disease mechanisms, we also develop a novel visualization tool by considering heterogeneous relationships among genomics elements. By applying the novel learning models and the visualization tools, pathways of several important cancer diseases are revisited and a series of novel potential bio-markers are discovered which improves our ability to diagnosis, treat and prevent cancer.

[1]  Manel Esteller,et al.  MicroRNAs and cancer epigenetics: a macrorevolution , 2010, Current opinion in oncology.

[2]  Michael B. Wakin,et al.  An Introduction To Compressive Sampling [A sensing/sampling paradigm that goes against the common knowledge in data acquisition] , 2008 .

[3]  K. Bechtol,et al.  Chunaram Choudhary Major Cellular Functions Lysine Acetylation Targets Protein Complexes and Co-Regulates , 2012 .

[4]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[6]  Philip C. Woodland,et al.  Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models , 1995, Comput. Speech Lang..

[7]  W. Gerald,et al.  Endogenous human microRNAs that suppress breast cancer metastasis , 2008, Nature.

[8]  Thomas D. Wu,et al.  Analysing gene expression data from DNA microarrays to identify candidate genes , 2001, The Journal of pathology.

[9]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[10]  Jing Li,et al.  Mining brain region connectivity for alzheimer's disease study via sparse inverse covariance estimation , 2009, KDD.

[11]  John S Mattick,et al.  Regulation of Epidermal Growth Factor Receptor Signaling in Human Cancer Cells by MicroRNA-7* , 2009, Journal of Biological Chemistry.

[12]  P. Sun,et al.  MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. , 2009, Biochemical and biophysical research communications.

[13]  Eric P. Xing,et al.  Dynamic Non-Parametric Mixture Models and the Recurrent Chinese Restaurant Process: with Applications to Evolutionary Clustering , 2008, SDM.

[14]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[15]  Elodie Portales-Casamar,et al.  Transcriptional repression of microRNA genes by PML-RARA increases expression of key cancer proteins in acute promyelocytic leukemia. , 2009, Blood.

[16]  Brendan J. Frey,et al.  Comparing Sequence and Expression for Predicting microRNA Targets Using GenMIR3 , 2007, Pacific Symposium on Biocomputing.

[17]  Michael I. Jordan,et al.  Predictive low-rank decomposition for kernel methods , 2005, ICML.

[18]  Ivor W. Tsang,et al.  Dynamic vehicle routing with stochastic requests , 2003, IJCAI 2003.

[19]  Thomas L. Griffiths,et al.  The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.

[20]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[21]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[22]  Nicola Garofalo,et al.  Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces , 1998 .

[23]  Yadong Wang,et al.  miR2Disease: a manually curated database for microRNA deregulation in human disease , 2008, Nucleic Acids Res..

[24]  Elena Baralis,et al.  Measuring gene similarity by means of the classification distance , 2011, Knowledge and Information Systems.

[25]  K. Stanovich Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. , 1986 .

[26]  C. Croce,et al.  microRNA-205 regulates HER3 in human breast cancer. , 2009, Cancer research.

[27]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[28]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[29]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[30]  I. MacRae,et al.  The RNA-induced Silencing Complex: A Versatile Gene-silencing Machine* , 2009, The Journal of Biological Chemistry.

[31]  Edward Yang,et al.  Human cytomegalovirus expresses novel microRNAs during productive viral infection , 2005, Cellular microbiology.

[32]  Y. Yatabe,et al.  Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival , 2004, Cancer Research.

[33]  Sandya Liyanarachchi,et al.  Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. , 2009, Cancer research.

[34]  Lancelot F. James,et al.  Generalized weighted Chinese restaurant processes for species sampling mixture models , 2003 .

[35]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[36]  Marilyn E Morris,et al.  MicroRNA-328 Negatively Regulates the Expression of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Cancer Cells , 2009, Molecular Pharmacology.

[37]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[38]  Antonia J. Jones,et al.  Feature selection for genetic sequence classification , 1998, Bioinform..

[39]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[40]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[41]  Tian-Li Wang,et al.  MicroRNA Expression and Identification of Putative miRNA Targets in Ovarian Cancer , 2008, PloS one.

[42]  Pat Langley,et al.  Generalized clustering, supervised learning, and data assignment , 2001, KDD '01.

[43]  Feiping Nie,et al.  Multi-Subspace Representation and Discovery , 2011, ECML/PKDD.

[44]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[45]  M. Rossiter The Matthew Matilda Effect in Science , 1993 .

[46]  Paola Sebastiani,et al.  Imputation of missing genotypes: an empirical evaluation of IMPUTE , 2008, BMC Genetics.

[47]  Z. Shao,et al.  Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer , 2009, Oncogene.

[48]  David P Turner,et al.  MicroRNA-mediated inhibition of prostate-derived Ets factor messenger RNA translation affects prostate-derived Ets factor regulatory networks in human breast cancer. , 2008, Cancer research.

[49]  Anil Potti,et al.  An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[50]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[51]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[52]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[53]  Jieping Ye,et al.  Efficient Recovery of Jointly Sparse Vectors , 2009, NIPS.

[54]  Adrian Lewis,et al.  The mathematics of eigenvalue optimization , 2003, Math. Program..

[55]  Kaizhu Huang,et al.  Generalized sparse metric learning with relative comparisons , 2011, Knowledge and Information Systems.

[56]  Fabio Martelli,et al.  MicroRNA-210 as a Novel Therapy for Treatment of Ischemic Heart Disease , 2010, Circulation.

[57]  Benjamin M. Wheeler,et al.  The deep evolution of metazoan microRNAs , 2009, Evolution & development.

[58]  P. Morin,et al.  MicroRNAs in ovarian carcinomas. , 2010, Endocrine-related cancer.

[59]  R. Stephens,et al.  Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. , 2008, Cancer research.

[60]  G. Goodall,et al.  The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 , 2008, Nature Cell Biology.

[61]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[62]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Francis R. Bach,et al.  Structured Sparse Principal Component Analysis , 2009, AISTATS.

[64]  Giovanni Vanni Frajese,et al.  miR-221 and miR-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27Kip1* , 2007, Journal of Biological Chemistry.

[65]  S. Schokrpur,et al.  Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells , 2008, Oncogene.

[66]  U. Lehmann,et al.  Epigenetic inactivation of microRNA gene hsa‐mir‐9‐1 in human breast cancer , 2008, The Journal of pathology.

[67]  Santosh K. Mishra,et al.  De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures , 2007, Bioinform..

[68]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[69]  Grigorios Tsoumakas,et al.  Multi-Label Classification of Music into Emotions , 2008, ISMIR.

[70]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[71]  George A. Calin,et al.  Expression of microRNAs and protein‐coding genes associated with perineural invasion in prostate cancer , 2008, The Prostate.

[72]  Fei Wang,et al.  Improving clustering by learning a bi-stochastic data similarity matrix , 2011, Knowledge and Information Systems.

[73]  F. Göbel,et al.  Random walks on graphs , 1974 .

[74]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[75]  P. Zhao,et al.  Grouped and Hierarchical Model Selection through Composite Absolute Penalties , 2007 .

[76]  Jean-Baptiste Cazier,et al.  Distinctive Patterns of MicroRNA Expression Associated with Karyotype in Acute Myeloid Leukaemia , 2008, PloS one.

[77]  Francis R. Bach,et al.  Bolasso: model consistent Lasso estimation through the bootstrap , 2008, ICML '08.

[78]  Norbert Senninger,et al.  EP300—A miRNA‐regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas , 2010, International journal of cancer.

[79]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[80]  S. Barik,et al.  Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells , 2008, Journal of Molecular Medicine.

[81]  Wei Wang,et al.  MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. , 2007, Cancer research.

[82]  Byoung-Tak Zhang,et al.  Human microRNA prediction through a probabilistic co-learning model of sequence and structure , 2005, Nucleic acids research.

[83]  Michael I. Jordan,et al.  Feature selection for high-dimensional genomic microarray data , 2001, ICML.

[84]  Sadakatsu Ikeda,et al.  Expression and function of microRNAs in heart disease. , 2010, Current drug targets.

[85]  John J Rossi,et al.  New Hope for a MicroRNA Therapy for Liver Cancer , 2009, Cell.

[86]  Donald C. Chang,et al.  Loss of mir-146a function in hormone-refractory prostate cancer. , 2008, RNA.

[87]  Chris H. Q. Ding,et al.  Graph Evolution via Social Diffusion Processes , 2011, ECML/PKDD.

[88]  Q. Cui,et al.  An Analysis of Human MicroRNA and Disease Associations , 2008, PloS one.

[89]  T. Tammela,et al.  MicroRNA expression profiling in prostate cancer. , 2007, Cancer research.

[90]  Todd R. Golub,et al.  MicroRNA Expression Signatures Accurately Discriminate Acute Lymphoblastic Leukemia from Acute Myeloid Leukemia. , 2007 .

[91]  S. Nordeen,et al.  MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents , 2009, Molecular Cancer Therapeutics.

[92]  Imran Babar,et al.  MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. , 2007, Cancer research.

[93]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  C. Morrison,et al.  MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B , 2007, Proceedings of the National Academy of Sciences.

[95]  Stephen Safe,et al.  The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. , 2007, Cancer research.

[96]  Trey Ideker,et al.  Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data , 2008, PLoS Comput. Biol..

[97]  Iris Barshack,et al.  MicroRNA expression differentiates between primary lung tumors and metastases to the lung. , 2010, Pathology, research and practice.

[98]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[99]  Hongyuan Zha,et al.  {\it R}$_{\mbox{1}}$-PCA: rotational invariant {\it L}$_{\mbox{1}}$-norm principal component analysis for robust subspace factorization , 2006, ICML 2006.

[100]  P. M. Voorhoeve,et al.  MicroRNAs: Oncogenes, tumor suppressors or master regulators of cancer heterogeneity? , 2010, Biochimica et biophysica acta.

[101]  C. Croce,et al.  MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia , 2007, Oncogene.

[102]  Wei Liu,et al.  Robust multi-class transductive learning with graphs , 2009, CVPR.

[103]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[104]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  Y. Yatabe,et al.  A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. , 2005, Cancer research.

[106]  Jieping Ye,et al.  Large-scale sparse logistic regression , 2009, KDD.

[107]  Thomas Ried,et al.  Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2 , 2009, Molecular Cancer Therapeutics.

[108]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[109]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[110]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[111]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[112]  Kent A. Spackman,et al.  Signal Detection Theory: Valuable Tools for Evaluating Inductive Learning , 1989, ML.

[113]  Driss Aboutajdine,et al.  A two-stage gene selection scheme utilizing MRMR filter and GA wrapper , 2011, Knowledge and Information Systems.

[114]  Peter A. Jones,et al.  Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. , 2006, Cancer cell.

[115]  Chris H. Q. Ding,et al.  A learning framework using Green's function and kernel regularization with application to recommender system , 2007, KDD '07.

[116]  K. Ohshiro,et al.  MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. , 2009, Cancer research.

[117]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[118]  J. Tropp JUST RELAX: CONVEX PROGRAMMING METHODS FOR SUBSET SELECTION AND SPARSE APPROXIMATION , 2004 .

[119]  S. Sathiya Keerthi,et al.  A simple and efficient algorithm for gene selection using sparse logistic regression , 2003, Bioinform..

[120]  Ron Kohavi,et al.  Wrappers for feature selection , 1997 .

[121]  F. Slack,et al.  Small non-coding RNAs in animal development , 2008, Nature Reviews Molecular Cell Biology.

[122]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[123]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[124]  G. Watson Characterization of the subdifferential of some matrix norms , 1992 .

[125]  Mihailo Stojnic,et al.  Strong thresholds for ℓ2/ℓ1-optimization in block-sparse compressed sensing , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[126]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[127]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[128]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[129]  Mauro Biffoni,et al.  The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities , 2008, Nature Medicine.

[130]  Jing Gong,et al.  MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. , 2010, Cancer research.

[131]  Chris H. Q. Ding,et al.  Towards Structural Sparsity: An Explicit l2/l0 Approach , 2010, ICDM.

[132]  Ji Zhu,et al.  Regularized Multivariate Regression for Identifying Master Predictors with Application to Integrative Genomics Study of Breast Cancer. , 2008, The annals of applied statistics.

[133]  Leonard D. Goldstein,et al.  MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype , 2007, Genome Biology.

[134]  H. Zou,et al.  Addendum: Regularization and variable selection via the elastic net , 2005 .

[135]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[136]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[137]  C. Creighton,et al.  Widespread deregulation of microRNA expression in human prostate cancer , 2008, Oncogene.

[138]  A. Jemal,et al.  Cancer statistics, 2012 , 2012, CA: a cancer journal for clinicians.

[139]  Kathryn A. O’Donnell,et al.  Therapeutic microRNA Delivery Suppresses Tumorigenesis in a Murine Liver Cancer Model , 2009, Cell.

[140]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[141]  Jian Huang,et al.  Regularized ROC method for disease classification and biomarker selection with microarray data , 2005, Bioinform..

[142]  Weixiong Zhang,et al.  MicroRNA prediction with a novel ranking algorithm based on random walks , 2008, ISMB.

[143]  Carlo M Croce,et al.  Apoptomirs: small molecules have gained the license to kill. , 2010, Endocrine-related cancer.

[144]  Jieping Ye,et al.  Multi-Task Feature Learning Via Efficient l2, 1-Norm Minimization , 2009, UAI.

[145]  Ming Lei,et al.  Researchnegatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1α/HIF-1β , 2010 .

[146]  I. King Jordan,et al.  A Family of Human MicroRNA Genes from Miniature Inverted-Repeat Transposable Elements , 2007, PloS one.

[147]  Yi Ting,et al.  miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation. , 2009, Experimental hematology.

[148]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[149]  Richard M. Karp,et al.  Genome-Wide Association Data Reveal a Global Map of Genetic Interactions among Protein Complexes , 2009, PLoS genetics.

[150]  R. Stephens,et al.  Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. , 2006, Cancer cell.

[151]  Marek Petrik,et al.  Feature Selection Using Regularization in Approximate Linear Programs for Markov Decision Processes , 2010, ICML.

[152]  Huan Liu,et al.  Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution , 2003, ICML.

[153]  John D. Minna,et al.  miR-93, miR-98, and miR-197 Regulate Expression of Tumor Suppressor Gene FUS1 , 2009, Molecular Cancer Research.

[154]  T Takahashi,et al.  Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92 , 2007, Oncogene.

[155]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[156]  Ben Taskar,et al.  Joint covariate selection and joint subspace selection for multiple classification problems , 2010, Stat. Comput..

[157]  Fei Wang,et al.  SOR: Scalable Orthogonal Regression for Low-Redundancy Feature Selection and its Healthcare Applications , 2012, SDM.

[158]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[159]  Jeffrey O. Kephart,et al.  Evaluation of Optimization Methods for Network Bottleneck Diagnosis , 2007, Fourth International Conference on Autonomic Computing (ICAC'07).

[160]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[161]  Peter I. Frazier,et al.  Distance dependent Chinese restaurant processes , 2009, ICML.

[162]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[163]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[164]  Ping Jin,et al.  MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells , 2009, Journal of Translational Medicine.

[165]  J. Nemunaitis,et al.  Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? , 2008, Cancer Gene Therapy.

[166]  Jing Li,et al.  Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation , 2010, NeuroImage.

[167]  A. Schetter,et al.  Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. , 2010, Carcinogenesis.

[168]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[169]  Chris H. Q. Ding,et al.  Orthogonal nonnegative matrix t-factorizations for clustering , 2006, KDD '06.

[170]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[171]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[172]  Yasunori Fujita,et al.  Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. , 2008, Biochemical and biophysical research communications.

[173]  Feiping Nie,et al.  Efficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization , 2010, NIPS.

[174]  M. Hsiao,et al.  MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation , 2009, Oncogene.

[175]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[176]  Alexander Pertsemlidis,et al.  Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. , 2009, Genes & development.

[177]  Alain Rakotomamonjy,et al.  Variable Selection Using SVM-based Criteria , 2003, J. Mach. Learn. Res..

[178]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .

[179]  Hua Zhao,et al.  A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. , 2008, Carcinogenesis.

[180]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[181]  B. White,et al.  Coordinate Regulation of FOXO1 by miR-27a, miR-96, and miR-182 in Breast Cancer Cells , 2009, The Journal of Biological Chemistry.

[182]  B. Cullen Transcription and processing of human microRNA precursors. , 2004, Molecular cell.

[183]  Hyunsoo Kim,et al.  Sparse Non-negative Matrix Factorizations via Alternating Non-negativity-constrained Least Squares , 2006 .

[184]  Michael F. Clarke,et al.  Downregulation of miRNA-200c Links Breast Cancer Stem Cells with Normal Stem Cells , 2009, Cell.

[185]  Zhihui Feng,et al.  A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. , 2009, Gynecologic oncology.

[186]  E. Wentzel,et al.  miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. , 2009, Cancer research.

[187]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[188]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[189]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[190]  Didier Picard,et al.  miR-22 Inhibits Estrogen Signaling by Directly Targeting the Estrogen Receptor α mRNA , 2009, Molecular and Cellular Biology.

[191]  Wenjiang J. Fu Penalized Regressions: The Bridge versus the Lasso , 1998 .

[192]  Tzu-Hao Wang,et al.  Decreased expression of microRNA-199b increases protein levels of SET (protein phosphatase 2A inhibitor) in human choriocarcinoma. , 2010, Cancer letters.

[193]  Thomas Villmann,et al.  Evolving trees for the retrieval of mass spectrometry-based bacteria fingerprints , 2010, Knowledge and Information Systems.

[194]  Ted M. Dawson,et al.  Understanding microRNAs in neurodegeneration , 2009, Nature Reviews Neuroscience.

[195]  Qiong Shao,et al.  MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. , 2008, RNA.

[196]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[197]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[198]  Duan Ma,et al.  The cell growth suppressor, mir-126, targets IRS-1. , 2008, Biochemical and biophysical research communications.

[199]  Anthony J Gill,et al.  miR-195 and miR-483-5p Identified as Predictors of Poor Prognosis in Adrenocortical Cancer , 2009, Clinical Cancer Research.

[200]  Domenico Coppola,et al.  MicroRNA-155 Is Regulated by the Transforming Growth Factor β/Smad Pathway and Contributes to Epithelial Cell Plasticity by Targeting RhoA , 2008, Molecular and Cellular Biology.

[201]  G. Kristiansen,et al.  Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma , 2009, International journal of cancer.

[202]  S. Varambally,et al.  Genomic Loss of microRNA-101 Leads to Overexpression of Histone Methyltransferase EZH2 in Cancer , 2008, Science.

[203]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[204]  Hanah Margalit,et al.  Clustering and conservation patterns of human microRNAs , 2005, Nucleic acids research.

[205]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[206]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[207]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[208]  Massimo Negrini,et al.  MicroRNAs in human cancer: from research to therapy , 2007, Journal of Cell Science.

[209]  K. Ohshiro,et al.  MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. , 2008, Cancer research.

[210]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[211]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[212]  Giuseppe Basso,et al.  miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. , 2009, Cancer research.

[213]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[214]  Xi Chen,et al.  An Efficient Proximal-Gradient Method for Single and Multi-task Regression with Structured Sparsity , 2010, ArXiv.

[215]  E. Miska,et al.  MicroRNA functions in animal development and human disease , 2005, Development.

[216]  Shu Zheng,et al.  MicroRNA‐183 regulates Ezrin expression in lung cancer cells , 2008, FEBS letters.

[217]  Haojie Huang Commentary on Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer , 2009 .

[218]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[219]  S. vanDongen Graph Clustering by Flow Simulation , 2000 .

[220]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[221]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[222]  Thomas G. Dietterich,et al.  Learning non-redundant codebooks for classifying complex objects , 2009, ICML '09.

[223]  K. Lao,et al.  Radiation modulation of MicroRNA in prostate cancer cell lines , 2008, The Prostate.

[224]  U Lehmann,et al.  [Epigenetic inactivation of microRNA genes in mammary carcinoma]. , 2007, Verhandlungen der Deutschen Gesellschaft fur Pathologie.

[225]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[226]  Lin Zhang,et al.  The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis , 2008, Nature Cell Biology.

[227]  Yan Zeng,et al.  Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. , 2010, Carcinogenesis.

[228]  P. Langley Selection of Relevant Features in Machine Learning , 1994 .

[229]  E. Lander,et al.  MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia , 2002, Nature Genetics.