Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals ☆

Abstract In this paper we obtain the Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for fractional integrals which generalize the two familiar fractional integrals namely, the Riemann–Liouville and the Hadamard fractional integrals into a single form. We prove that, in most cases, we obtain the Riemann–Liouville and the Hadamard equivalence just by taking limits when a parameter ρ → 1 and ρ → 0 + , respectively.

[1]  M. Emin Özdemir,et al.  Hermite-Hadamard-type inequalities via (α, m)-convexity , 2011, Comput. Math. Appl..

[2]  M. Noor On Hadamard integral inequalities involving two log-preinvex functions. , 2007 .

[3]  New generalized Hermite-Hadamard type inequalities and applications to special means , 2013 .

[4]  Udita N. Katugampola Mellin transforms of generalized fractional integrals and derivatives , 2011, Appl. Math. Comput..

[5]  Kuei-Lin Tseng,et al.  New Hermite-Hadamard-type inequalities for convex functions (II) , 2011, Comput. Math. Appl..

[6]  D. O’Regan,et al.  On Hermite-Hadamard type inequalities via generalized fractional integrals , 2016 .

[7]  Sebastien Gaboury,et al.  Some relations involving a generalized fractional derivative operator , 2013 .

[8]  Udita N. Katugampola New approach to a generalized fractional integral , 2010, Appl. Math. Comput..

[9]  Tatiana Odzijewicz,et al.  Generalized fractional isoperimetric problem of several variables , 2014 .

[10]  Feixiang Chen,et al.  Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals , 2015, Appl. Math. Comput..

[11]  Udita N. Katugampola Existence and Uniqueness results for a class of Generalized Fractional Differential Equations , 2014, 1411.5229.

[12]  José António Tenreiro Machado,et al.  What is a fractional derivative? , 2015, J. Comput. Phys..

[13]  Agnieszka B. Malinowska,et al.  A Generalized Fractional Calculus of Variations , 2013, 1401.7291.

[14]  Delfim F. M. Torres,et al.  Expansion Formulas in Terms of Integer-Order Derivatives for the Hadamard Fractional Integral and Derivative , 2011, Numerical Functional Analysis and Optimization.

[15]  V. Kiryakova Generalized Fractional Calculus and Applications , 1993 .

[16]  M. Noor HADAMARD INTEGRAL INEQUALITIES FOR PRODUCT OF TWO PREINVEX FUNCTIONS , 2022 .

[17]  Shanhe Wu,et al.  Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals , 2013, Appl. Math. Comput..

[18]  Sever Silvestru Dragomir,et al.  Hermite-Hadamard's type inequalities for operator convex functions , 2011, Appl. Math. Comput..

[19]  Constantin P. Niculescu The Hermite–Hadamard inequality for log-convex functions , 2012, Nonlinear Analysis: Theory, Methods & Applications.

[20]  Hüseyin Yildirim,et al.  Generalized Fractional Integral Inequalities for Continuous Random Variables , 2015 .

[21]  Agnieszka B. Malinowska,et al.  Fractional differential equations with dependence on the Caputo-Katugampola derivative , 2016, 1607.06913.

[22]  Sergey S. Postnov,et al.  Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation , 2013, Automation and Remote Control.

[23]  Kuei-Lin Tseng,et al.  New Hermite-Hadamard-type inequalities for convex functions (I) , 2011, Appl. Math. Lett..

[24]  Mehmet Zeki Sarikaya,et al.  Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities , 2013, Math. Comput. Model..

[25]  Muhammad Aslam Noor,et al.  Generalized Convexity and Integral Inequalities , 2015 .

[26]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[27]  Ricardo Almeida,et al.  Variational Problems Involving a Caputo-Type Fractional Derivative , 2016, J. Optim. Theory Appl..

[28]  Udita N. Katugampola Correction to "What is a fractional derivative?" by Ortigueira and Machado [Journal of Computational Physics, Volume 293, 15 July 2015, Pages 4-13. Special issue on Fractional PDEs] , 2016, J. Comput. Phys..

[29]  Huseyin YILDIRIMa,et al.  Ostrowski inequality for generalized fractional integral and related inequalities , 2014 .

[30]  Udita N. Katugampola A NEW APPROACH TO GENERALIZED FRACTIONAL DERIVATIVES , 2011, 1106.0965.

[31]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[32]  M. Noor,et al.  Fractional Hermite-Hadamard Inequalities for some New Classes of Godunova-Levin Functions , 2014 .

[33]  Ricardo Almeida,et al.  An approximation formula for the Katugampola integral , 2015, 1512.03791.

[34]  Agnieszka B. Malinowska,et al.  Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics , 2012, 1203.1961.

[35]  S. Ntouyas,et al.  On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation , 2015 .

[36]  Mehmet Zeki Sarikaya,et al.  On new inequalities of Hermite-Hadamard-Fejér type for convex functions via fractional integrals , 2014, Appl. Math. Comput..

[37]  I. Podlubny Fractional differential equations , 1998 .

[38]  İmdat İşcan,et al.  Hermite–Hadamard–Fejér Type Inequalities for p-Convex Functions via Fractional Integrals , 2014, 1404.7722.

[39]  M. Shoaib,et al.  Hermite–Hadamard type integral inequalities for differentiable m-preinvex and (α,m)-preinvex functions , 2015 .

[40]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[41]  J. Hadamard,et al.  Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann , 1893 .