Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals ☆
暂无分享,去创建一个
[1] M. Emin Özdemir,et al. Hermite-Hadamard-type inequalities via (α, m)-convexity , 2011, Comput. Math. Appl..
[2] M. Noor. On Hadamard integral inequalities involving two log-preinvex functions. , 2007 .
[3] New generalized Hermite-Hadamard type inequalities and applications to special means , 2013 .
[4] Udita N. Katugampola. Mellin transforms of generalized fractional integrals and derivatives , 2011, Appl. Math. Comput..
[5] Kuei-Lin Tseng,et al. New Hermite-Hadamard-type inequalities for convex functions (II) , 2011, Comput. Math. Appl..
[6] D. O’Regan,et al. On Hermite-Hadamard type inequalities via generalized fractional integrals , 2016 .
[7] Sebastien Gaboury,et al. Some relations involving a generalized fractional derivative operator , 2013 .
[8] Udita N. Katugampola. New approach to a generalized fractional integral , 2010, Appl. Math. Comput..
[9] Tatiana Odzijewicz,et al. Generalized fractional isoperimetric problem of several variables , 2014 .
[10] Feixiang Chen,et al. Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals , 2015, Appl. Math. Comput..
[11] Udita N. Katugampola. Existence and Uniqueness results for a class of Generalized Fractional Differential Equations , 2014, 1411.5229.
[12] José António Tenreiro Machado,et al. What is a fractional derivative? , 2015, J. Comput. Phys..
[13] Agnieszka B. Malinowska,et al. A Generalized Fractional Calculus of Variations , 2013, 1401.7291.
[14] Delfim F. M. Torres,et al. Expansion Formulas in Terms of Integer-Order Derivatives for the Hadamard Fractional Integral and Derivative , 2011, Numerical Functional Analysis and Optimization.
[15] V. Kiryakova. Generalized Fractional Calculus and Applications , 1993 .
[16] M. Noor. HADAMARD INTEGRAL INEQUALITIES FOR PRODUCT OF TWO PREINVEX FUNCTIONS , 2022 .
[17] Shanhe Wu,et al. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals , 2013, Appl. Math. Comput..
[18] Sever Silvestru Dragomir,et al. Hermite-Hadamard's type inequalities for operator convex functions , 2011, Appl. Math. Comput..
[19] Constantin P. Niculescu. The Hermite–Hadamard inequality for log-convex functions , 2012, Nonlinear Analysis: Theory, Methods & Applications.
[20] Hüseyin Yildirim,et al. Generalized Fractional Integral Inequalities for Continuous Random Variables , 2015 .
[21] Agnieszka B. Malinowska,et al. Fractional differential equations with dependence on the Caputo-Katugampola derivative , 2016, 1607.06913.
[22] Sergey S. Postnov,et al. Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation , 2013, Automation and Remote Control.
[23] Kuei-Lin Tseng,et al. New Hermite-Hadamard-type inequalities for convex functions (I) , 2011, Appl. Math. Lett..
[24] Mehmet Zeki Sarikaya,et al. Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities , 2013, Math. Comput. Model..
[25] Muhammad Aslam Noor,et al. Generalized Convexity and Integral Inequalities , 2015 .
[26] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[27] Ricardo Almeida,et al. Variational Problems Involving a Caputo-Type Fractional Derivative , 2016, J. Optim. Theory Appl..
[28] Udita N. Katugampola. Correction to "What is a fractional derivative?" by Ortigueira and Machado [Journal of Computational Physics, Volume 293, 15 July 2015, Pages 4-13. Special issue on Fractional PDEs] , 2016, J. Comput. Phys..
[29] Huseyin YILDIRIMa,et al. Ostrowski inequality for generalized fractional integral and related inequalities , 2014 .
[30] Udita N. Katugampola. A NEW APPROACH TO GENERALIZED FRACTIONAL DERIVATIVES , 2011, 1106.0965.
[31] H. Kober. ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .
[32] M. Noor,et al. Fractional Hermite-Hadamard Inequalities for some New Classes of Godunova-Levin Functions , 2014 .
[33] Ricardo Almeida,et al. An approximation formula for the Katugampola integral , 2015, 1512.03791.
[34] Agnieszka B. Malinowska,et al. Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics , 2012, 1203.1961.
[35] S. Ntouyas,et al. On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation , 2015 .
[36] Mehmet Zeki Sarikaya,et al. On new inequalities of Hermite-Hadamard-Fejér type for convex functions via fractional integrals , 2014, Appl. Math. Comput..
[37] I. Podlubny. Fractional differential equations , 1998 .
[38] İmdat İşcan,et al. Hermite–Hadamard–Fejér Type Inequalities for p-Convex Functions via Fractional Integrals , 2014, 1404.7722.
[39] M. Shoaib,et al. Hermite–Hadamard type integral inequalities for differentiable m-preinvex and (α,m)-preinvex functions , 2015 .
[40] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[41] J. Hadamard,et al. Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann , 1893 .