An Optimal Streamline Diffusion Finite Element Method for a Singularly Perturbed Problem

The stability and accuracy of a streamline diffusion finite element method (SDFEM) on arbitrary grids applied to a linear 1-d singularly perturbed problem are studied in this paper. With a special choice of the stabilization quadratic bubble function, the SDFEM is shown to have an optimal second order in the sense that ‖u − uh‖∞ ≤ C infvh∈V h ‖u − vh‖∞, where uh is the SDFEM approximation of the exact solution u and Vh is the linear finite element space. With the quasi-optimal interpolation error estimate, quasi-optimal convergence results for the SDFEM are obtained. As a consequence, an open question about the optimal choice of the monitor function for a second order scheme in the moving mesh method is answered.

[1]  J. J. Miller,et al.  Fitted Numerical Methods for Singular Perturbation Problems , 1996 .

[2]  Uno Nävert,et al.  An Analysis of some Finite Element Methods for Advection-Diffusion Problems , 1981 .

[3]  V. B. Andreev The Green Function and A Priori Estimates of Solutions of Monotone Three-Point Singularly Perturbed Finite-Difference Schemes , 2001 .

[4]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[5]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[6]  Eugene O'Riordan,et al.  Singularly perturbed convection-diffusion problems with boundary and weak interior layers , 2004 .

[7]  Natalia Kopteva Maximum Norm A Posteriori Error Estimates for a One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..

[8]  Lutz Tobiska,et al.  The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy , 2003, SIAM J. Numer. Anal..

[9]  George Beckett,et al.  Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem , 2000 .

[10]  R. Kellogg,et al.  Analysis of some difference approximations for a singular perturbation problem without turning points , 1978 .

[11]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[12]  A. H. Schatz,et al.  Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .

[14]  Natalia Kopteva,et al.  A Robust Adaptive Method for a Quasi-Linear One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..

[15]  Torsten Linß,et al.  Layer-adapted meshes for convection-diffusion problems , 2003 .

[16]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[17]  Yanping Chen,et al.  Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution , 2003 .

[18]  Long Chen,et al.  Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations , 2004, IMR.

[19]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[20]  Rolf Rannacher,et al.  Pointwise superconvergence of the streamline diffusion finite-element method , 1996 .

[21]  Gabriel Wittum,et al.  Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..

[22]  Alessandro Russo,et al.  Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles , 1996 .

[23]  Koichi Niijima,et al.  Pointwise error estimates for a streamline diffusion finite element scheme , 1989 .

[24]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[25]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[26]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids , 2003, SIAM J. Numer. Anal..

[27]  Giancarlo Sangalli Quasi Optimality of the SUPG Method for the One-Dimensional Advection-Diffusion Problem , 2003, SIAM J. Numer. Anal..

[28]  L. D. Marini,et al.  A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems , 1999 .

[29]  Torsten Linß,et al.  The sdfem on Shishkin meshes for linear convection-diffusion problems , 2001, Numerische Mathematik.

[30]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[31]  Guohui Zhou,et al.  How accurate is the streamline diffusion finite element method? , 1997, Math. Comput..

[32]  Long Chen,et al.  Multilevel Homotopic Adaptive Finite Element Methods for Convection Dominated Problems , 2005 .

[33]  Yanping Chen,et al.  Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid , 2006, Adv. Comput. Math..

[34]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .