An Optimal Streamline Diffusion Finite Element Method for a Singularly Perturbed Problem
暂无分享,去创建一个
[1] J. J. Miller,et al. Fitted Numerical Methods for Singular Perturbation Problems , 1996 .
[2] Uno Nävert,et al. An Analysis of some Finite Element Methods for Advection-Diffusion Problems , 1981 .
[3] V. B. Andreev. The Green Function and A Priori Estimates of Solutions of Monotone Three-Point Singularly Perturbed Finite-Difference Schemes , 2001 .
[4] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[5] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..
[6] Eugene O'Riordan,et al. Singularly perturbed convection-diffusion problems with boundary and weak interior layers , 2004 .
[7] Natalia Kopteva. Maximum Norm A Posteriori Error Estimates for a One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..
[8] Lutz Tobiska,et al. The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy , 2003, SIAM J. Numer. Anal..
[9] George Beckett,et al. Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem , 2000 .
[10] R. Kellogg,et al. Analysis of some difference approximations for a singular perturbation problem without turning points , 1978 .
[11] LongChen,et al. OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .
[12] A. H. Schatz,et al. Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .
[14] Natalia Kopteva,et al. A Robust Adaptive Method for a Quasi-Linear One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..
[15] Torsten Linß,et al. Layer-adapted meshes for convection-diffusion problems , 2003 .
[16] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[17] Yanping Chen,et al. Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution , 2003 .
[18] Long Chen,et al. Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations , 2004, IMR.
[19] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[20] Rolf Rannacher,et al. Pointwise superconvergence of the streamline diffusion finite-element method , 1996 .
[21] Gabriel Wittum,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..
[22] Alessandro Russo,et al. Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles , 1996 .
[23] Koichi Niijima,et al. Pointwise error estimates for a streamline diffusion finite element scheme , 1989 .
[24] T. Hughes,et al. MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .
[25] Alessandro Russo,et al. CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .
[26] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids , 2003, SIAM J. Numer. Anal..
[27] Giancarlo Sangalli. Quasi Optimality of the SUPG Method for the One-Dimensional Advection-Diffusion Problem , 2003, SIAM J. Numer. Anal..
[28] L. D. Marini,et al. A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems , 1999 .
[29] Torsten Linß,et al. The sdfem on Shishkin meshes for linear convection-diffusion problems , 2001, Numerische Mathematik.
[30] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[31] Guohui Zhou,et al. How accurate is the streamline diffusion finite element method? , 1997, Math. Comput..
[32] Long Chen,et al. Multilevel Homotopic Adaptive Finite Element Methods for Convection Dominated Problems , 2005 .
[33] Yanping Chen,et al. Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid , 2006, Adv. Comput. Math..
[34] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .