Topological cyclic homology

Topological cyclic homology is a refinement of Connes--Tsygan's cyclic homology which was introduced by Bokstedt--Hsiang--Madsen in 1993 as an approximation to algebraic $K$-theory. There is a trace map from algebraic $K$-theory to topological cyclic homology, and a theorem of Dundas--Goodwillie--McCarthy asserts that this induces an equivalence of relative theories for nilpotent immersions, which gives a way for computing $K$-theory in various situations. The construction of topological cyclic homology is based on genuine equivariant homotopy theory, the use of explicit point-set models, and the elaborate notion of a cyclotomic spectrum. The goal of this paper is to revisit this theory using only homotopy-invariant notions. In particular, we give a new construction of topological cyclic homology. This is based on a new definition of the $\infty$-category of cyclotomic spectra: We define a cyclotomic spectrum to be a spectrum $X$ with $S^1$-action (in the most naive sense) together with $S^1$-equivariant maps $\varphi_p: X\to X^{tC_p}$ for all primes $p$. Here $X^{tC_p}=\mathrm{cofib}(\mathrm{Nm}: X_{hC_p}\to X^{hC_p})$ is the Tate construction. On bounded below spectra, we prove that this agrees with previous definitions. As a consequence, we obtain a new and simple formula for topological cyclic homology. In order to construct the maps $\varphi_p: X\to X^{tC_p}$ in the example of topological Hochschild homology we introduce and study Tate diagonals for spectra and Frobenius homomorphisms of commutative ring spectra. In particular we prove a version of the Segal conjecture for the Tate diagonals and relate these Frobenius homomorphisms to power operations.

[1]  Ib Madsen,et al.  On the K-theory of finite algebras over witt vectors of perfect fields , 1997 .

[2]  D. Kaledin Spectral Mackey functors and equivariant algebraic K-Theory ( I ) , 2016 .

[3]  D. Kaledin,et al.  Motivic structures in non-commutative geometry , 2010, 1003.3210.

[4]  D. M. Kan,et al.  Partial model categories and their simplicial nerves , 2011, 1102.2512.

[5]  S. Wegmann,et al.  Limits of stable homotopy and cohomotopy groups , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Clark Barwick,et al.  Cyclonic spectra, cyclotomic spectra, and a conjecture of Kaledin , 2016, 1602.02163.

[7]  Mark Hovey,et al.  Tate cohomology lowers chromatic Bousfield classes , 1996 .

[8]  B. Shipley Symmetric Spectra and Topological Hochschild Homology , 2000 .

[9]  R. Switzer The Steenrod Algebra and its Dual , 2002 .

[10]  Ib Madsen,et al.  The cyclotomic trace and algebraic K-theory of spaces , 1993 .

[11]  M. Hopkins,et al.  On the nonexistence of elements of Kervaire invariant one , 2009, 0908.3724.

[12]  R. Vogt,et al.  Strong cofibrations and fibrations in enriched categories , 2002 .

[13]  J. Rognes,et al.  On cyclic fixed points of spectra , 2007, 0712.3476.

[14]  L. Hesselholt Periodic topological cyclic homology and the Hasse-Weil zeta function , 2016 .

[15]  John D. S. Jones Cyclic homology and equivariant homology , 1987 .

[16]  I. Berstein On the Dimension of Modules and Algebras IX: Direct Limits , 1958, Nagoya Mathematical Journal.

[17]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[18]  A. Suslin On the K-theory of local fields , 1984 .

[19]  A. Blumberg,et al.  An ∞‐categorical approach to R‐line bundles, R‐module Thom spectra, and twisted R‐homology , 2014, 1403.4325.

[20]  E. Dyer,et al.  Homology of Iterated Loop Spaces , 1962 .

[21]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[22]  J. Rognes,et al.  Algebraic K-theory of group rings and the cyclotomic trace map , 2015, 1504.03674.

[23]  V. Hinich Dwyer-Kan localization revisited , 2013, 1311.4128.

[24]  T. Goodwillie Relative algebraic K-theory and cyclic homology , 1986 .

[25]  John R. Klein The dualizing spectrum of a topological group , 2001 .

[26]  The McCord Model for the Tensor Product of a Space and a Commutative Ring Spectrum , 2002, math/0202042.

[27]  Julia Collins,et al.  HOMOLOGICAL ALGEBRA , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[28]  D. Kaledin Cyclotomic complexes , 2010, 1003.2810.

[29]  D. Ravenel THE SEGAL CONJECTURE FOR CYCLIC GROUPS , 1981 .

[30]  Bae 50 % , 2018, CME.

[31]  A. Blumberg,et al.  A universal characterization of higher algebraic K-theory , 2010, 1001.2282.

[32]  Michael A. Mandell,et al.  Topological Cyclic Homology Via the Norm , 2014, Documenta Mathematica.

[33]  M. Steinberger Homology operations for H∞ and Hn ring spectra , 1986 .

[34]  Marc Hoyois The homotopy fixed points of the circle action on Hochschild homology , 2015, 1506.07123.

[35]  O. Gabber K-theory of Henselian Local Rings and Henselian Pairs , 1992 .

[36]  A. Blumberg,et al.  Topological Hochschild homology of Thom spectra and the free loop space , 2008, 0811.0553.

[37]  A. Mathew,et al.  K-theory and topological cyclic homology of henselian pairs , 2018, 1803.10897.

[38]  Michael A. Mandell,et al.  Model Categories of Diagram Spectra , 2001, Proceedings of the London Mathematical Society.

[39]  J. Greenless,et al.  The Tate spectrum of $v_{n}$-periodic complex oriented theories , 1996 .

[40]  David Gepner,et al.  Lax colimits and free fibrations in ∞-categories , 2017 .

[41]  Jon P. May,et al.  ENRICHED MODEL CATEGORIES AND PRESHEAF CATEGORIES , 2011, 1110.3567.

[42]  Michael A. Mandell,et al.  Equivariant Orthogonal Spectra and S-Modules , 2002 .

[43]  A. Suslin On theK-theory of algebraically closed fields , 1983 .

[44]  Cary Malkiewich HOMOTOPY COLIMITS VIA THE BAR CONSTRUCTION , 2014 .

[45]  Andrew J. Blumberg,et al.  The homotopy theory of cyclotomic spectra , 2013, 1303.1694.

[46]  F. Farrell,et al.  An extension of tate cohomology to a class of infinite groups , 1977 .

[47]  R. M. Vogt,et al.  Topological Hochschild Homology , 2000 .

[48]  P. Scholze,et al.  Integral p-adic Hodge theory , 2016 .

[49]  J. Adams,et al.  New Developments in Topology: Operations of the nth kind in K-theory, and what we don't know about RP∞ , 1974 .

[50]  C. L. REEDY,et al.  HOMOTOPY THEORY OF MODEL CATEGORIES , 1974 .

[51]  G. Carlsson,et al.  On the algebraic $K$-theory of simply connected spaces , 1996 .

[52]  A. K. Bousfield The localization of spectra with respect to homology , 1975 .

[53]  Philip S. Hirschhorn Model categories and their localizations , 2003 .

[54]  A. Mathew,et al.  Nilpotence and descent in equivariant stable homotopy theory , 2015, 1507.06869.

[55]  Hopf algebra structure on topological Hochschild homology , 2005, math/0502195.

[56]  P. Scholze,et al.  Prisms and prismatic cohomology , 2019, Annals of Mathematics.

[57]  David Gepner,et al.  Universality of multiplicative infinite loop space machines , 2013, 1305.4550.

[58]  M. Atiyah POWER OPERATIONS IN K -THEORY , 1966 .

[59]  M. Speirs On the K-theory of truncated polynomial algebras, revisited , 2019, Advances in Mathematics.

[60]  C. A. Robinson EQUIVARIANT STABLE HOMOTOPY THEORY (Lecture Notes in Mathematics 1213) , 1988 .

[61]  Saul Glasman Stratified categories, geometric fixed points and a generalized Arone-Ching theorem , 2015, 1507.01976.

[62]  Bjørn Ian Dundas,et al.  The Local Structure of Algebraic K-Theory , 2012 .

[63]  Bi-relative algebraic K-theory and topological cyclic homology , 2004, math/0409122.

[64]  Daniel Dugger A PRIMER ON HOMOTOPY COLIMITS , 2008 .

[65]  J. Milnor THE STEENROD ALGEBRA AND ITS DUAL1 , 1958 .

[66]  D. W. Anderson,et al.  Fibrations and geometric realizations , 1978 .

[67]  Daniel C. Isaksen,et al.  Topological hypercovers and 1-realizations , 2004 .

[68]  B. Dundas,et al.  Topological Cyclic Homology , 2013 .

[69]  N. Stapleton,et al.  The character of the total power operation , 2015, 1502.01987.

[70]  Gijs Heuts,et al.  Goodwillie Approximations to Higher Categories , 2015, Memoirs of the American Mathematical Society.

[71]  中村 得之,et al.  Cohomology Operations , 2019, The Norm Residue Theorem in Motivic Cohomology.

[72]  L. Hesselholt,et al.  Algebraic $K$-theory of planar cuspical curves , 2019, 1903.08295.

[73]  J. May New Developments in Topology: E∞ spaces, group completions, and permutative categories , 1974 .

[74]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[75]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[76]  Irakli Patchkoria,et al.  Comparing cyclotomic structures on different models for topological Hochschild homology , 2017, Journal of Topology.

[77]  J. McClure,et al.  THH(R) ≅ R ⊗ S1 for E∞ ring spectra☆ , 1997 .

[78]  S. Araki,et al.  TOPOLOGY OF Hn-SPACES AND H-SQUARING OPERATIONS. , 1956 .

[79]  S. Tsalidis Topological hochschild homology and the homotopy descent problem , 1998 .

[80]  Trace maps in algebraic K-theory and the Coates-Wiles homomorphism. , 1990 .

[81]  J. Rognes,et al.  The topological Singer construction , 2010, Documenta Mathematica.

[82]  J. McClure,et al.  H Ring Spectra and Their Applications , 1986 .