Imaging Specific Genomic DNA in Living Cells.

The three-dimensional organization of the genome plays important roles in regulating the functional output of the genome and even in the maintenance of epigenetic inheritance and genome stability. Here, we review and compare a number of newly developed methods-especially those that utilize the CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated protein 9) system-that enable the direct visualization of specific, endogenous DNA sequences in living cells. We also discuss the practical considerations in implementing the CRISPR imaging technique to achieve sufficient signal-to-background levels, high specificity, and high labeling efficiency. These DNA labeling methods enable tracking of the copy number, localization, and movement of genomic elements, and we discuss the potential applications of these methods in understanding the searching and targeting mechanism of the Cas9-sgRNA complex, investigating chromosome organization, and visualizing genome instability and rearrangement.

[1]  A Klug,et al.  Repetitive zinc‐binding domains in the protein transcription factor IIIA from Xenopus oocytes. , 1985, The EMBO journal.

[2]  N. Pavletich,et al.  Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A , 1991, Science.

[3]  Co-chairman's remarks: protein designs for the specific recognition of DNA. , 1993, Gene.

[4]  Aaron Klug,et al.  In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence , 1994, Nature.

[5]  H. Petrie,et al.  T cell receptor gene recombination patterns and mechanisms: cell death, rescue, and T cell production , 1995, The Journal of experimental medicine.

[6]  A S Belmont,et al.  In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition , 1996, The Journal of cell biology.

[7]  T. Kanda,et al.  Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells , 1998, Current Biology.

[8]  Gail Sudlow,et al.  Interphase Cell Cycle Dynamics of a Late-Replicating, Heterochromatic Homogeneously Staining Region: Precise Choreography of Condensation/Decondensation and Nuclear Positioning , 1998, The Journal of cell biology.

[9]  Hiroshi Kimura,et al.  Kinetics of Core Histones in Living Human Cells , 2001, The Journal of cell biology.

[10]  C. Pabo,et al.  Design and selection of novel Cys2His2 zinc finger proteins. , 2001, Annual review of biochemistry.

[11]  P. Avner,et al.  X-chromosome inactivation: counting, choice and initiation , 2001, Nature Reviews Genetics.

[12]  A S Belmont,et al.  Visualizing chromosome dynamics with GFP. , 2001, Trends in cell biology.

[13]  Michael R. Green,et al.  Expressing the human genome , 2001, Nature.

[14]  S. Gasser,et al.  Visualizing Chromatin Dynamics in Interphase Nuclei , 2002, Science.

[15]  R. Beerli,et al.  Engineering polydactyl zinc-finger transcription factors , 2002, Nature Biotechnology.

[16]  Tom Misteli,et al.  Conservation of Relative Chromosome Positioning in Normal and Cancer Cells , 2002, Current Biology.

[17]  William A. Harris,et al.  In Vivo Time-Lapse Imaging of Cell Divisions during Neurogenesis in the Developing Zebrafish Retina , 2003, Neuron.

[18]  Dana Carroll,et al.  Enhancing Gene Targeting with Designed Zinc Finger Nucleases , 2003, Science.

[19]  Roland Eils,et al.  Global Chromosome Positions Are Transmitted through Mitosis in Mammalian Cells , 2003, Cell.

[20]  Daniele Zink,et al.  Visualizing chromatin and chromosomes in living cells. , 2003, Methods.

[21]  David Baltimore,et al.  Chimeric Nucleases Stimulate Gene Targeting in Human Cells , 2003, Science.

[22]  David A. Agard,et al.  Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro , 1989, Chromosoma.

[23]  Heinrich Leonhardt,et al.  DNA labeling in living cells , 2005, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[24]  R. Eils,et al.  Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes , 2005, PLoS biology.

[25]  Marjori Matzke,et al.  Use of Two-Color Fluorescence-Tagged Transgenes to Study Interphase Chromosomes in Living Plants1[W] , 2005, Plant Physiology.

[26]  Jeffrey C. Miller,et al.  Highly efficient endogenous human gene correction using designed zinc-finger nucleases , 2005, Nature.

[27]  R. Flavell,et al.  Interchromosomal associations between alternatively expressed loci , 2005, Nature.

[28]  W. V. van Cappellen,et al.  Dynamics of relative chromosome position during the cell cycle. , 2004, Molecular biology of the cell.

[29]  N. Maizels Immunoglobulin gene diversification. , 2005, Annual review of genetics.

[30]  M. Bibikova,et al.  Efficient Gene Targeting in Drosophila With Zinc-Finger Nucleases , 2006, Genetics.

[31]  Christine M Disteche,et al.  Dosage compensation of the active X chromosome in mammals , 2006, Nature Genetics.

[32]  Gaudenz Danuser,et al.  Positional stability of single double-strand breaks in mammalian cells , 2007, Nature Cell Biology.

[33]  T. Cremer,et al.  Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions , 2007, Nature Reviews Genetics.

[34]  Tobias Meckel,et al.  Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins , 2007, Nucleic acids research.

[35]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[36]  J. Ellenberg,et al.  Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. , 2007, Methods.

[37]  M. Fletcher,et al.  Imbalances of chromosomes 4, 9, and 12 are recurrent in the thecoma-fibroma group of ovarian stromal tumors. , 2007, Cancer genetics and cytogenetics.

[38]  Ronnie J Winfrey,et al.  Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. , 2008, Molecular cell.

[39]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[40]  Marco Foiani,et al.  Regulation of DNA repair throughout the cell cycle , 2008, Nature Reviews Molecular Cell Biology.

[41]  V. Eusebi,et al.  Trisomy of chromosome 6 in Merkel cell carcinoma within lymph nodes , 2008, Virchows Archiv.

[42]  Jean-Christophe Olivo-Marin,et al.  High-resolution statistical mapping reveals gene territories in live yeast , 2008, Nature Methods.

[43]  Jan Ellenberg,et al.  Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin , 2009, The EMBO journal.

[44]  Matthew J. Moscou,et al.  A Simple Cipher Governs DNA Recognition by TAL Effectors , 2009, Science.

[45]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[46]  K. Sumiyama,et al.  A cluster of three long-range enhancers directs regional Shh expression in the epithelial linings , 2009, Development.

[47]  Jens Boch,et al.  Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors , 2009, Science.

[48]  A. Belmont,et al.  Mitotic chromosome structure: reproducibility of folding and symmetry between sister chromatids. , 2009, Biophysical journal.

[49]  Nathaniel D Heintzman,et al.  Finding distal regulatory elements in the human genome. , 2009, Current opinion in genetics & development.

[50]  Thomas Cremer,et al.  4D chromatin dynamics in cycling cells: Theodor Boveri's hypotheses revisited. , 2010, Nucleus.

[51]  R. Barrangou,et al.  CRISPR/Cas, the Immune System of Bacteria and Archaea , 2010, Science.

[52]  William Stafford Noble,et al.  A Three-Dimensional Model of the Yeast Genome , 2010, Nature.

[53]  Eric S. Lander,et al.  Hi-C: A Method to Study the Three-dimensional Architecture of Genomes. , 2010, Journal of visualized experiments : JoVE.

[54]  Erin L. Doyle,et al.  Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting , 2011, Nucleic acids research.

[55]  Noboru Jo Sakabe,et al.  Transcriptional enhancers in development and disease , 2012, Genome Biology.

[56]  Howard Y. Chang,et al.  A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression , 2011, Nature.

[57]  E. Tüzel Organelle Dynamics: A Tale of Fusing Nucleoli , 2011, Current Biology.

[58]  G. Church,et al.  Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. , 2011, Nature biotechnology.

[59]  Elo Leung,et al.  A TALE nuclease architecture for efficient genome editing , 2011, Nature Biotechnology.

[60]  Emmanuel Barillot,et al.  Live-Cell Chromosome Dynamics and Outcome of X Chromosome Pairing Events during ES Cell Differentiation , 2011, Cell.

[61]  Jennifer A. Mitchell,et al.  Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features , 2012, BMC Genomics.

[62]  Albert J R Heck,et al.  RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions , 2011, Proceedings of the National Academy of Sciences.

[63]  T. Lahaye,et al.  Assembly of custom TALE-type DNA binding domains by modular cloning , 2011, Nucleic acids research.

[64]  R. Terns,et al.  CRISPR-based adaptive immune systems. , 2011, Current opinion in microbiology.

[65]  Konstantin Severinov,et al.  Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence , 2011, Proceedings of the National Academy of Sciences.

[66]  C. Fairhead,et al.  Insertion site preference of Mu, Tn5, and Tn7 transposons , 2012, Mobile DNA.

[67]  Hicham Mansour,et al.  Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein , 2011, Plant Molecular Biology.

[68]  Nieng Yan,et al.  Structural Basis for Sequence-Specific Recognition of DNA by TAL Effectors , 2012, Science.

[69]  George M. Church,et al.  Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers , 2012, Nucleic acids research.

[70]  Philip Bradley,et al.  The Crystal Structure of TAL Effector PthXo1 Bound to Its DNA Target , 2012, Science.

[71]  M. Cristina Cardoso,et al.  Targeted manipulation of heterochromatin rescues MeCP2 Rett mutants and re-establishes higher order chromatin organization , 2012, Nucleic acids research.

[72]  J. Keith Joung,et al.  FLASH Assembly of TALENs Enables High-Throughput Genome Editing , 2012, Nature Biotechnology.

[73]  A. Amon,et al.  New insights into the troubles of aneuploidy. , 2012, Annual review of cell and developmental biology.

[74]  H. Leonhardt,et al.  Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers , 2012, Nucleic acids research.

[75]  Reza Kalhor,et al.  Genome architectures revealed by tethered chromosome conformation capture and population-based modeling , 2011, Nature Biotechnology.

[76]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[77]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[78]  W. D. Laat,et al.  A Decade of 3c Technologies: Insights into Nuclear Organization References , 2022 .

[79]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[80]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[81]  S. Boulton,et al.  Playing the end game: DNA double-strand break repair pathway choice. , 2012, Molecular cell.

[82]  J. Doudna,et al.  RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.

[83]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[84]  G. Bejerano,et al.  Enhancers: five essential questions , 2013, Nature Reviews Genetics.

[85]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[86]  Wei Zhang,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2014, Cell.

[87]  W. Sung,et al.  Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations , 2013, Nature.

[88]  Tobias Schmidt,et al.  A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes , 2012, Nature Biotechnology.

[89]  Chad A. Cowan,et al.  Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. , 2013, Cell stem cell.

[90]  Bas van Steensel,et al.  Genome Architecture: Domain Organization of Interphase Chromosomes , 2013, Cell.

[91]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[92]  L. Mirny,et al.  Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data , 2013, Nature Reviews Genetics.

[93]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[94]  Christopher M. Vockley,et al.  RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.

[95]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[96]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[97]  T. Cathomen,et al.  Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells , 2012, Nucleic acids research.

[98]  T. Misteli,et al.  Spatial Dynamics of Chromosome Translocations in Living Cells , 2013, Science.

[99]  A. Tanay,et al.  Single cell Hi-C reveals cell-to-cell variability in chromosome structure , 2013, Nature.

[100]  Tom Misteli,et al.  Functional implications of genome topology , 2013, Nature Structural &Molecular Biology.

[101]  Farshid Guilak,et al.  Synergistic and tunable human gene activation by combinations of synthetic transcription factors , 2013, Nature Methods.

[102]  Duhee Bang,et al.  A library of TAL effector nucleases spanning the human genome , 2013, Nature Biotechnology.

[103]  Yusuke Miyanari,et al.  Live visualization of chromatin dynamics with fluorescent TALEs , 2013, Nature Structural &Molecular Biology.

[104]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[105]  G. Church,et al.  Cas9 as a versatile tool for engineering biology , 2013, Nature Methods.

[106]  Nicholas E. Propson,et al.  Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis , 2013, Proceedings of the National Academy of Sciences.

[107]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[108]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[109]  J. Dekker,et al.  The hierarchy of the 3D genome. , 2013, Molecular cell.

[110]  Huimin Zhao,et al.  Transcription activator‐like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing , 2013, Biotechnology and bioengineering.

[111]  Job Dekker,et al.  Organization of the Mitotic Chromosome , 2013, Science.

[112]  Thoru Pederson,et al.  Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors , 2013, Proceedings of the National Academy of Sciences.

[113]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[114]  Martin J. Aryee,et al.  Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing , 2014, Nature Biotechnology.

[115]  Yaojun Zhang,et al.  3D Trajectories Adopted by Coding and Regulatory DNA Elements: First-Passage Times for Genomic Interactions , 2014, Cell.

[116]  Heinrich Leonhardt,et al.  Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system , 2014, Nucleus.

[117]  Mazhar Adli,et al.  Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease , 2014, Nature Biotechnology.

[118]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[119]  Lothar Schermelleh,et al.  RecA bundles mediate homology pairing between distant sisters during DNA break repair , 2013, Nature.

[120]  J. Dekker,et al.  Predictive Polymer Modeling Reveals Coupled Fluctuations in Chromosome Conformation and Transcription , 2014, Cell.

[121]  Baohui Chen,et al.  Imaging genomic elements in living cells using CRISPR/Cas9. , 2014, Methods in enzymology.

[122]  H. Kim,et al.  A guide to genome engineering with programmable nucleases , 2014, Nature Reviews Genetics.

[123]  Job Dekker,et al.  Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture , 2014, Epigenetics & Chromatin.

[124]  Tessa G. Montague,et al.  Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs , 2014, PloS one.

[125]  Nicolas Tanguy-le-Gac,et al.  DNA Dynamics during Early Double-Strand Break Processing Revealed by Non-Intrusive Imaging of Living Cells , 2014, PLoS genetics.

[126]  David R. Liu,et al.  Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification , 2014, Nature Biotechnology.

[127]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[128]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[129]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[130]  Shiyou Zhu,et al.  High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells , 2014, Nature.

[131]  P. O’Farrell,et al.  Illuminating DNA replication during Drosophila development using TALE-lights , 2014, Current Biology.

[132]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[133]  David A. Scott,et al.  Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells , 2014, Nature Biotechnology.

[134]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[135]  L. Nissim,et al.  Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. , 2014, Molecular cell.

[136]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[137]  Charles A. Gersbach,et al.  Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector , 2014, Nucleic acids research.

[138]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[139]  Yilong Li,et al.  Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library , 2013, Nature Biotechnology.

[140]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[141]  Ronald D. Vale,et al.  A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging , 2014, Cell.

[142]  Heinrich Leonhardt,et al.  Targeting and tracing of specific DNA sequences with dTALEs in living cells , 2013, Nucleic acids research.

[143]  Luke A. Gilbert,et al.  Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds , 2015, Cell.

[144]  Peng Yin,et al.  Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes , 2015, Nature Communications.

[145]  G. Church,et al.  Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach , 2015, Nature Methods.

[146]  Shaojie Zhang,et al.  Multicolor CRISPR labeling of chromosomal loci in human cells , 2015, Proceedings of the National Academy of Sciences.

[147]  Matthew Meyerson,et al.  CHROMOTHRIPSIS FROM DNA DAMAGE IN MICRONUCLEI , 2015, Nature.

[148]  Sigal Shachar,et al.  Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping , 2015, Cell.

[149]  David A. Scott,et al.  In vivo genome editing using Staphylococcus aureus Cas9 , 2015, Nature.

[150]  J. Doudna,et al.  The structural biology of CRISPR-Cas systems. , 2015, Current opinion in structural biology.

[151]  Andrei Kucharavy,et al.  Targeting the Adaptability of Heterogeneous Aneuploids , 2015, Cell.

[152]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[153]  Jennifer A. Doudna,et al.  A Cas9–guide RNA complex preorganized for target DNA recognition , 2015, Science.

[154]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[155]  R. Tjian,et al.  Dynamics of CRISPR-Cas9 genome interrogation in living cells , 2015, Science.

[156]  J. Joung,et al.  Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition , 2015, Nature Biotechnology.

[157]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[158]  Attila Kertesz-Farkas,et al.  Nuclear architecture dictates HIV-1 integration site selection , 2015, Nature.

[159]  Leonid A. Mirny,et al.  Super-resolution imaging reveals distinct chromatin folding for different epigenetic states , 2015, Nature.

[160]  Wensheng Wei,et al.  Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system , 2016, Nucleic acids research.

[161]  Luke A. Gilbert,et al.  Versatile protein tagging in cells with split fluorescent protein , 2016, Nature Communications.

[162]  Wendell A. Lim,et al.  Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci , 2016, Nucleic acids research.