Comprehensive molecular and pathological evaluation of transitional mesothelioma assisted by deep learning approach: a multi institutional study of the International Mesothelioma Panel from MESOPATH Reference Center.

[1]  N. Le Stang,et al.  Differential Diagnosis of Epithelioid Malignant Mesothelioma With Lung and Breast Pleural Metastasis: A Systematic Review Compared With a Standardized Panel of Antibodies-A New Proposal That May Influence Pathologic Practice. , 2020, Archives of pathology & laboratory medicine.

[2]  N. Girard,et al.  Redefining malignant pleural mesothelioma types as a continuum uncovers immune-vascular interactions , 2019, EBioMedicine.

[3]  G. Wainrib,et al.  Deep learning-based classification of mesothelioma improves prediction of patient outcome , 2019, Nature Medicine.

[4]  S. Lantuejoul,et al.  Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): a multicentre, open-label, randomised, non-comparative, phase 2 trial. , 2019, The Lancet. Oncology.

[5]  K. Rosenzweig,et al.  Current and Future Management of Malignant Mesothelioma: A Consensus Report from the National Cancer Institute Thoracic Malignancy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation , 2018, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[6]  David L. Gibbs,et al.  Integrative Molecular Characterization of Malignant Pleural Mesothelioma. , 2018, Cancer discovery.

[7]  F. Galateau-Sallé,et al.  Highlights of the 14th international mesothelioma interest group meeting: Pathologic separation of benign from malignant mesothelial proliferations and histologic/molecular analysis of malignant mesothelioma subtypes. , 2018, Lung cancer.

[8]  Geoffrey E. Hinton Deep Learning-A Technology With the Potential to Transform Health Care. , 2018, JAMA.

[9]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[10]  N. Le Stang,et al.  New Insights on Diagnostic Reproducibility of Biphasic Mesotheliomas: A Multi‐Institutional Evaluation by the International Mesothelioma Panel From the MESOPATH Reference Center , 2018, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[11]  Caitlyn A. Miller,et al.  Utility of Methylthioadenosine Phosphorylase Compared With BAP1 Immunohistochemistry, and CDKN2A and NF2 Fluorescence In Situ Hybridization in Separating Reactive Mesothelial Proliferations From Epithelioid Malignant Mesotheliomas. , 2018, Archives of pathology & laboratory medicine.

[12]  M. Aieta,et al.  Is there a role for immunotherapy in malignant pleural mesothelioma? , 2018, Medical Oncology.

[13]  W. Mao,et al.  Progress in the Management of Malignant Pleural Mesothelioma in 2017 , 2018, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[14]  F. Galateau-Sallé,et al.  Nuclear grade and necrosis predict prognosis in malignant epithelioid pleural mesothelioma: a multi-institutional study , 2018, Modern Pathology.

[15]  A. Gown,et al.  Guidelines for Pathologic Diagnosis of Malignant Mesothelioma 2017 Update of the Consensus Statement From the International Mesothelioma Interest Group. , 2018, Archives of pathology & laboratory medicine.

[16]  A. Churg,et al.  GATA3 Immunohistochemistry for Distinguishing Sarcomatoid and Desmoplastic Mesothelioma From Sarcomatoid Carcinoma of the Lung , 2017, The American journal of surgical pathology.

[17]  F. Galateau-Sallé,et al.  The differential diagnosis between pleural sarcomatoid mesothelioma and spindle cell/pleomorphic (sarcomatoid) carcinomas of the lung: evidence-based guidelines from the International Mesothelioma Panel and the MESOPATH National Reference Center. , 2017, Human pathology.

[18]  M. Tagawa,et al.  Usefulness of p16/CDKN2A fluorescence in situ hybridization and BAP1 immunohistochemistry for the diagnosis of biphasic mesothelioma. , 2017, Annals of diagnostic pathology.

[19]  A. Gown,et al.  BAP1 Immunohistochemistry and p16 FISH in the Diagnosis of Sarcomatous and Desmoplastic Mesotheliomas , 2016, The American journal of surgical pathology.

[20]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[21]  Philippe Terrier,et al.  RNA sequencing validation of the Complexity INdex in SARComas prognostic signature. , 2016, European journal of cancer.

[22]  F. Galateau-Sallé,et al.  Dataset for Reporting of Malignant Mesothelioma of the Pleura or Peritoneum: Recommendations From the International Collaboration on Cancer Reporting (ICCR). , 2016, Archives of pathology & laboratory medicine.

[23]  Thomas D. Wu,et al.  Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations , 2016, Nature Genetics.

[24]  F. Galateau-Sallé,et al.  The 2015 World Health Organization Classification of Tumors of the Pleura: Advances since the 2004 Classification. , 2016, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[25]  K. Nackaerts,et al.  Neoadjuvant chemotherapy and extrapleural pneumonectomy of malignant pleural mesothelioma with or without hemithoracic radiotherapy (SAKK 17/04): a randomised, international, multicentre phase 2 trial. , 2015, The Lancet. Oncology.

[26]  T. Yamanaka,et al.  Trimodality strategy for treating malignant pleural mesothelioma: results of a feasibility study of induction pemetrexed plus cisplatin followed by extrapleural pneumonectomy and postoperative hemithoracic radiation (Japan Mesothelioma Interest Group 0601 Trial) , 2015, International Journal of Clinical Oncology.

[27]  B. Seifert,et al.  A New Prognostic Score Supporting Treatment Allocation for Multimodality Therapy for Malignant Pleural Mesothelioma: A Review of 12 Years’ Experience , 2015, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[28]  A. Husain,et al.  BAP1 facilitates diagnostic objectivity, classification, and prognostication in malignant pleural mesothelioma. , 2015, Human pathology.

[29]  A. Gown,et al.  BAP1 Immunohistochemistry and p16 FISH to Separate Benign From Malignant Mesothelial Proliferations , 2015, The American journal of surgical pathology.

[30]  W. Travis WHO classification of tumours of the lung, pleura, thymus and heart , 2015 .

[31]  L. Chirieac,et al.  p16 Deletion in sarcomatoid tumors of the lung and pleura. , 2013, Archives of pathology & laboratory medicine.

[32]  Geoffrey E. Hinton,et al.  An Efficient Learning Procedure for Deep Boltzmann Machines , 2012, Neural Computation.

[33]  V. Roggli,et al.  Sarcomatoid mesothelioma: a clinical–pathologic correlation of 326 cases , 2010, Modern Pathology.

[34]  Y. Takeshima,et al.  Value of immunohistochemistry in the differential diagnosis of pleural sarcomatoid mesothelioma from lung sarcomatoid carcinoma , 2009, Histopathology.

[35]  S. Kunugi,et al.  Ultrastructural and Immunohistochemical Analysis of Fibrous Long–Spacing Collagen Fibrils in Malignant Mesothelioma , 2009, Ultrastructural pathology.

[36]  Y. Takeshima,et al.  Differential diagnosis of sarcomatoid mesothelioma from true sarcoma and sarcomatoid carcinoma using immunohistochemistry , 2008, Pathology international.

[37]  R. Attanoos,et al.  Anti‐mesothelial markers in sarcomatoid mesothelioma and other spindle cell neoplasms , 2000, Histopathology.

[38]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.