Enhanced competitive differential evolution for constrained optimization

The constrained optimization with differential evolution (DE) is addressed. A novel variant of competitive differential evolution with a hybridized search of feasibility region is proposed, where opposition-based optimization and adaptive controlled random search are combined. Various variants of the algorithm are experimentally compared on the benchmark set developed for the special session of IEEE Congress of Evolutionary Computation (CEC) 2010. The results of the enhanced competitive DE show effective search of feasible solutions, in difficult problems significantly better than the competitive DE variant presented at CEC 2010.

[1]  M. Montaz Ali,et al.  Population set-based global optimization algorithms: some modifications and numerical studies , 2004, Comput. Oper. Res..

[2]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[3]  Vitaliy Feoktistov Differential Evolution: In Search of Solutions , 2006 .

[4]  M. M. Ali,et al.  A numerical study of some modified differential evolution algorithms , 2006, Eur. J. Oper. Res..

[5]  Josef Tvrdík,et al.  Adaptive differential evolution and exponential crossover , 2008, 2008 International Multiconference on Computer Science and Information Technology.

[6]  Arthur C. Sanderson,et al.  Adaptive Differential Evolution: A Robust Approach to Multimodal Problem Optimization , 2009 .

[7]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[8]  Josef Tvrdík,et al.  Competitive differential evolution for constrained problems , 2010, IEEE Congress on Evolutionary Computation.

[9]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[10]  Andries Petrus Engelbrecht,et al.  Self-adaptive Differential Evolution , 2005, CIS.

[11]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[12]  J. Lampinen A constraint handling approach for the differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  Janez Brest,et al.  Constrained Real-Parameter Optimization with ε -Self-Adaptive Differential Evolution , 2009 .

[14]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[15]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[16]  J. Tvrdík,et al.  COMPETITIVE DIFFERENTIAL EVOLUTION , 2006 .

[17]  P. N. Suganthan,et al.  Ensemble of Constraint Handling Techniques , 2010, IEEE Transactions on Evolutionary Computation.

[18]  Josef Tvrdík,et al.  Adaptive population-based search: Application to estimation of nonlinear regression parameters , 2007, Comput. Stat. Data Anal..

[19]  Zbigniew Michalewicz,et al.  Evolutionary algorithms , 1997, Emerging Evolutionary Algorithms for Antennas and Wireless Communications.

[20]  Ville Tirronen,et al.  Scale factor inheritance mechanism in distributed differential evolution , 2009, Soft Comput..

[21]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[22]  Daniela Zaharie,et al.  Influence of crossover on the behavior of Differential Evolution Algorithms , 2009, Appl. Soft Comput..

[23]  Arthur C. Sanderson,et al.  Adaptive Differential Evolution , 2009 .

[24]  J. Tvrdík Self-adaptive Variants of Differential Evolution with Exponential Crossover , 2009 .

[25]  D. Zaharie A Comparative Analysis of Crossover Variants in Differential Evolution , 2007 .