An efficient method for free vibration analysis of rotating truncated conical shells

This paper proposes a discrete singular convolution method for the free vibration analysis of rotating conical shells. A regularized Shannon's delta kernel is selected as the singular convolution to illustrate the present algorithm. Frequency parameters of the forward modes are obtained for different types of boundary conditions, rotating velocity and geometric parameters. The present results compare well with numerical data available in the literature. Numerical experiments reveal that the present approach is accurate, efficient and reliable for vibration analysis of conical shells.

[1]  G. Wei Discrete singular convolution for beam analysis , 2001 .

[2]  K. Federhofer,et al.  Eigenschwingungen der Kegelschale , 1938 .

[3]  Chang Shu,et al.  Free vibration analysis of laminated composite cylindrical shells by DQM , 1997 .

[4]  K. M. Liew,et al.  Free Vibration of Pretwisted, Cantilevered Composite Shallow Conical Shells , 1997 .

[5]  G. Wei,et al.  DSC ANALYSIS OF RECTANGULAR PLATES WITH NON-UNIFORM BOUNDARY CONDITIONS , 2002 .

[6]  Li Hua,et al.  Frequency analysis of rotating truncated circular orthotropic conical shells with different boundary conditions , 2000 .

[7]  Charles W. Bert,et al.  Critical speed analysis of laminated composite, hollow drive shafts , 1993 .

[8]  Decheng Wan,et al.  Numerical solution of incompressible flows by discrete singular convolution , 2002 .

[9]  H. Chung,et al.  Free vibration analysis of circular cylindrical shells , 1981 .

[10]  Clive L. Dym,et al.  Some New Results for the Vibrations of Circular Cylinders , 1973 .

[11]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .

[12]  K. M. Liew,et al.  Vibratory behaviour of shallow conical shells by a global Ritz formulation , 1995 .

[13]  Yang Xiang,et al.  DSC‐Ritz method for the free vibration analysis of Mindlin plates , 2005 .

[14]  Li Hua,et al.  Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell , 1999 .

[15]  W. Soedel Vibrations of shells and plates , 1981 .

[16]  K. Liew,et al.  Vibratory Characteristics of Cantilevered Rectangular Shallow Shells of Variable Thickness , 1994 .

[17]  Li Hua,et al.  Vibration analysis of a rotating truncated circular conical shell , 1997 .

[18]  Š. Markuš,et al.  The mechanics of vibrations of cylindrical shells , 1988 .

[19]  B. Kröplin,et al.  Vibrations Of High Speed Rotating Shells With Calculations For Cylindrical Shells , 1993 .

[20]  K. M. Liew,et al.  Vibration of Shallow Shells: A Review With Bibliography , 1997 .

[21]  Guo-Wei Wei,et al.  VIBRATION ANALYSIS BY DISCRETE SINGULAR CONVOLUTION , 2001 .

[22]  Guo-Wei Wei,et al.  Solving quantum eigenvalue problems by discrete singular convolution , 2000 .

[23]  Li Hua,et al.  The generalized differential quadrature method for frequency analysis of a rotating conical shell with initial pressure , 2000 .

[24]  Guo-Wei Wei,et al.  A new algorithm for solving some mechanical problems , 2001 .

[25]  Liyong Tong,et al.  Free vibration of orthotropic conical shells , 1993 .

[26]  Yang Xiang,et al.  A NOVEL APPROACH FOR THE ANALYSIS OF HIGH-FREQUENCY VIBRATIONS , 2002 .

[27]  Guo-Wei Wei,et al.  Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates , 2004 .

[28]  X. Zhao,et al.  Vibration of Axially Loaded Rotating Cross-Ply Laminated Cylindrical Shells via Ritz Method , 2002 .

[29]  A. Leissa,et al.  Vibration of shells , 1973 .

[30]  Yang Xiang,et al.  Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm , 2002 .

[31]  Yang Xiang,et al.  Discrete singular convolution for the prediction of high frequency vibration of plates , 2002 .

[32]  Yang Xiang,et al.  The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution , 2001 .

[33]  Li Hua,et al.  Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method , 1998 .

[34]  K. M. Liew,et al.  A pb-2 Ritz Formulation for Flexural Vibration of Shallow Cylindrical Shells of Rectangular Planform , 1994 .

[35]  L. Hua Frequency characteristics of a rotating truncated circular layered conical shell , 2000 .