Radiological diagnosis in lung disease: factoring treatment options into the choice of diagnostic modality.

BACKGROUND Chest X-ray, computed tomography (CT), and magnetic resonance imaging (MRI) each have characteristic advantages and disadvantages that need to be considered in clinical decision-making. This point is discussed in reference to the main types of lung disease that are encountered in practice. METHOD A selective literature search was performed in the PubMed and Google Scholar databases. Existing clinical guidelines on the main types of lung disease and studies concerning radiological diagnosis were also con - sidered in this review. RESULTS There have been no more than a few large-scale, controlled comparative trials of different radiological techniques. Chest X-ray provides general orientation as an initial diagnostic study and is especially useful in the diagnosis of pneumonia, cancer, and chronic obstructive pulmonary disease (COPD). Multi-detector CT affords nearly isotropic spatial resolution at a radiation dose of only 0.2-5 mSv, much lower than before. Its main indications, according to current guidelines, are tumors, acute pulmonary embolism, pulmonary hypertension, pulmonary fibrosis, advanced COPD, and pneumonia in a high-risk patient. MRI is used in the diagnosis of cystic fibrosis, pulmonary embolism, pulmonary hypertension, and bronchial carcinoma. The positive predictive value (PPV) of a chest X-ray in outpatients with pneumonia is only 27% (gold standard, CT); in contrast, an initial, non-randomized trial of MRI in nosocomial pneumonia revealed a PPV of 95%. For the staging of mediastinal lymph nodes in bronchial carcinoma, MRI has a PPV of 88% and positron emission tomography with CT (PET/CT) has a PPV of 79%, while CT alone has a PPV of 41% (gold standard, histology). CONCLUSION The choice of radiologicalal technique for the detection, staging, follow-up, and quantification of lung disease should be based on the individual clinical options, so that appropriate treatment can be provided without excessive use of diagnostic testing.

[1]  S. Ewig,et al.  Epidemiologie, Diagnostik, antimikrobielle Therapie und Management von erwachsenen Patienten mit ambulant erworbenen unteren Atemwegsinfektionen sowie ambulant erworbener Pneumonie – Update 2009 , 2009 .

[2]  Y. Kim,et al.  Usefulness of magnetic resonance imaging for evaluation of cardiovascular invasion: Evaluation of sliding motion between thoracic mass and adjacent structures on cine MR images , 2005, Journal of magnetic resonance imaging : JMRI.

[3]  H. Sostman,et al.  Gadolinium-Enhanced Magnetic Resonance Angiography for Pulmonary Embolism , 2010, Annals of Internal Medicine.

[4]  H. Kauczor,et al.  Incomplete pulmonary fissures evaluated by volumetric thin-section CT: semi-quantitative evaluation for small fissure gaps identification, description of prevalence and severity of fissural defects. , 2013, European journal of radiology.

[5]  H. Kauczor,et al.  Chronic thromboembolic pulmonary hypertension: pre- and postoperative assessment with breath-hold MR imaging techniques. , 2004, Radiology.

[6]  O. M. Arıyürek,et al.  High resolution CT in children with cystic fibrosis: correlation with pulmonary functions and radiographic scores. , 2001, European journal of radiology.

[7]  R. Gibson,et al.  Pathophysiology and management of pulmonary infections in cystic fibrosis. , 2003, American journal of respiratory and critical care medicine.

[8]  M. M. Hoeper,et al.  Diagnostik und Therapie der pulmonalen Hypertonie , 2010 .

[9]  G. Bepler,et al.  Screening for lung cancer. , 2000, The New England journal of medicine.

[10]  G. Byrnes,et al.  Screening for lung cancer. , 2004, The Cochrane database of systematic reviews.

[11]  C. Gatsonis,et al.  Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening , 2012 .

[12]  Konrad Schultz,et al.  Leitlinie der Deutschen Atemwegsliga und der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin zur Diagnostik und Therapie von Patienten mit chronisch obstruktiver Bronchitis und Lungenemphysem (COPD) , 2007 .

[13]  W. Huda,et al.  Effective doses in radiology and diagnostic nuclear medicine: a catalog. , 2008, Radiology.

[14]  W. Self,et al.  High discordance of chest x-ray and computed tomography for detection of pulmonary opacities in ED patients: implications for diagnosing pneumonia. , 2013, The American journal of emergency medicine.

[15]  Y. Ohno,et al.  STIR turbo SE MR imaging vs. coregistered FDG‐PET/CT: Quantitative and qualitative assessment of N‐stage in non‐small‐cell lung cancer patients , 2007, Journal of magnetic resonance imaging : JMRI.

[16]  N. Chesler,et al.  Magnetic Resonance and Computed Tomography Imaging of the Structural and Functional Changes of Pulmonary Arterial Hypertension , 2013, Journal of thoracic imaging.

[17]  D. Naidich,et al.  Dual-energy Computed Tomography: Concepts, Performance, and Thoracic Applications , 2012, Journal of thoracic imaging.

[18]  Hans-Ulrich Kauczor,et al.  MRI of the lung: state of the art. , 2012, Diagnostic and interventional radiology.

[19]  Peter D Sly,et al.  Risk factors for bronchiectasis in children with cystic fibrosis. , 2013, The New England journal of medicine.

[20]  E. van Marck,et al.  Prospective evaluation of computed tomography and mediastinoscopy in mediastinal lymph node staging. , 1997, The European respiratory journal.

[21]  A. Borkhardt,et al.  S3-Leitlinie "Lungenerkrankung bei Mukoviszidose" Modul 1: Diagnostik und Therapie nach dem ersten Nachweis von Pseudomonas aeruginosa , 2015 .

[22]  M. Wielpütz,et al.  Magnetic Resonance Imaging of Cystic Fibrosis Lung Disease , 2013, Journal of thoracic imaging.

[23]  G. McLennan,et al.  A randomized study of endobronchial valves for advanced emphysema. , 2010, The New England journal of medicine.

[24]  I. Baumann,et al.  S3-Leitlinie „Lungenerkrankung bei Mukoviszidose“ , 2015, Monatsschrift Kinderheilkunde.

[25]  L. Klimek,et al.  Leitlinie der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin zur Diagnostik und Therapie von erwachsenen Patienten mit akutem und chronischem Husten , 2010 .

[26]  Takeshi Johkoh,et al.  American Thoracic Society Documents An Official ATS / ERS / JRS / ALAT Statement : Idiopathic Pulmonary Fibrosis : Evidence-based Guidelines for Diagnosis and Management , 2011 .

[27]  Olaf Dietrich,et al.  Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. , 2006, Radiology.

[28]  Y. Ohno,et al.  Whole‐body MR imaging vs. FDG‐PET: Comparison of accuracy of M‐stage diagnosis for lung cancer patients , 2007, Journal of magnetic resonance imaging : JMRI.

[29]  M. Puderbach,et al.  MRI of the lung (3/3)—current applications and future perspectives , 2012, Insights into Imaging.

[30]  J. Wild,et al.  Diagnostic accuracy of contrast-enhanced MR angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary hypertension , 2012, European Radiology.

[31]  H. Dienemann,et al.  Randomized study on early detection of lung cancer with MSCT in Germany: study design and results of the first screening round , 2012, Journal of Cancer Research and Clinical Oncology.

[32]  T. Reinhold,et al.  Prävention, Diagnostik, Therapie und Nachsorge des Lungenkarzinoms , 2010, Pneumologie.

[33]  E. Rietschel,et al.  N17c – Lungenerkrankung bei Mukoviszidose (S3) – Modul 1: Diagnostik und Therapie nach dem ersten Nachweis von Pseudomonas aeruginosa , 2007 .

[34]  B. Böttiger,et al.  The diagnosis and treatment of acute pulmonary embolism. , 2010, Deutsches Arzteblatt international.

[35]  H. Kauczor,et al.  Assessment of Morphological MRI for Pulmonary Changes in Cystic Fibrosis (CF) Patients: Comparison to Thin-Section CT and Chest X-ray , 2007, Investigative radiology.