Distance to ill-posedness for linear inequality systems under block perturbations: convex and infinite-dimensional cases
暂无分享,去创建一个
Marco A. López | María J. Cánovas | Juan Parra | M. J. Cánovas | F. J. Toledo | F. Toledo | J. Parra | M. López
[1] Jan van Tiel,et al. Convex Analysis: An Introductory Text , 1984 .
[2] R. Rockafellar,et al. The radius of metric regularity , 2002 .
[3] J. Dedieu. Cônes asymptotes d'ensembles non convexes , 1979 .
[4] Kim C. Border,et al. Infinite dimensional analysis , 1994 .
[5] M. Fabian,et al. Functional Analysis and Infinite-Dimensional Geometry , 2001 .
[6] James Renegar,et al. Linear programming, complexity theory and elementary functional analysis , 1995, Math. Program..
[7] Ky Fan,et al. On infinite systems of linear inequalities , 1968 .
[8] Yuval Rabani,et al. Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.
[9] F. Javier Toledo-Moreo,et al. Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems , 2005, Math. Program..
[10] J. Renegar. Some perturbation theory for linear programming , 1994, Math. Program..
[11] Marco A. López,et al. On the Stability of the Feasible Set in Optimization Problems , 2010, SIAM J. Optim..
[12] Kim C. Border,et al. Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .
[13] J. Valls,et al. On the Existence of Solutions for Linear Inequality Systems , 1995 .
[14] María J. Cánovas,et al. Stability of systems of linear equations and inequalities: distance to ill-posedness and metric regularity , 2007 .
[15] M. A. López-Cerdá,et al. Linear Semi-Infinite Optimization , 1998 .