Distance to ill-posedness for linear inequality systems under block perturbations: convex and infinite-dimensional cases

This article extends some results of Cánovas et al. [M.J. Cánovas, M.A. López, J. Parra, and F.J. Toledo, Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems, Math. Prog. Ser. A 103 (2005), pp. 95–126.] about distance to ill-posedness (feasibility/infeasibility) in three directions: from individual perturbations of inequalities to perturbations by blocks, from linear to convex inequalities and from finite- to infinite-dimensional (Banach) spaces of variables. The second of the referred directions, developed in the finite-dimensional case, was the original motivation of this article. In fact, after linearizing a convex system via the Fenchel–Legendre conjugate, affine perturbations of convex inequalities translate into block perturbations of the corresponding linearized system. We discuss the key role played by constant perturbations as an extreme case of block perturbations. We emphasize the fact that constant perturbations are enough to compute the distance to ill-posedness in the infinite-dimensional setting, as shown in the last part of this article, where some remarkable differences of infinite- versus finite-dimensional systems are presented. Throughout this article, the set indexing the constraints is arbitrary, with no topological structure. Accordingly, the functional dependence of the system coefficients on the index has no qualification at all.