Superoscillating Sequences in Several Variables

[1]  Michael Beny,et al.  Faster than Fourier , 2017 .

[2]  D. Struppa,et al.  Superoscillating sequences as solutions of generalized Schrödinger equations , 2015 .

[3]  D. Struppa,et al.  Quantum harmonic oscillator with superoscillating initial datum , 2014, 1411.4112.

[4]  Dae Gwan Lee,et al.  Superoscillations with Optimal Numerical Stability , 2014, IEEE Signal Processing Letters.

[5]  Dae Gwan Lee,et al.  Superoscillations of Prescribed Amplitude and Derivative , 2014, IEEE Transactions on Signal Processing.

[6]  D. Struppa,et al.  On Some Operators Associated to Superoscillations , 2013 .

[7]  Michael V Berry,et al.  Exact nonparaxial transmission of subwavelength detail using superoscillations , 2013 .

[8]  D. Struppa,et al.  On the Cauchy problem for the Schrödinger equation with superoscillatory initial data , 2013 .

[9]  D. Struppa,et al.  Superoscillation phenomena in SO(3) , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Jari Lindberg,et al.  Mathematical concepts of optical superresolution , 2012 .

[11]  M. Berry,et al.  Pointer supershifts and superoscillations in weak measurements , 2012 .

[12]  Daniele C. Struppa,et al.  Some mathematical properties of superoscillations , 2011 .

[13]  Mark R. Dennis,et al.  Natural superoscillations in monochromatic waves in D dimensions , 2009 .

[14]  P.J.S.G. Ferreira,et al.  Superoscillations: Faster Than the Nyquist Rate , 2006, IEEE Transactions on Signal Processing.

[15]  Sandu Popescu,et al.  Evolution of quantum superoscillations, and optical superresolution without evanescent waves , 2006 .

[16]  Achim Kempf,et al.  Unusual properties of superoscillating particles , 2003, quant-ph/0305148.

[17]  J. Anandan,et al.  Quantum Coherenece and Reality, In Celebration of the 60th Birthday of Yakir Aharonov , 1995 .

[18]  Michael V Berry,et al.  Evanescent and real waves in quantum billiards and Gaussian beams , 1994 .

[19]  C. Berenstein,et al.  Dirichlet Series and Convolution Equations , 1988 .

[20]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[21]  U. Graf Introduction to Hyperfunctions , 2010 .

[22]  Vaidman,et al.  Properties of a quantum system during the time interval between two measurements. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[23]  L. Ehrenpreis Fourier analysis in several complex variables , 1970 .