The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis.

[1]  R. Jaenisch,et al.  Whsc1 links pluripotency exit with mesendoderm specification , 2019, Nature Cell Biology.

[2]  E. Diamanti,et al.  Complementary Activity of ETV5, RBPJ, and TCF3 Drives Formative Transition from Naive Pluripotency , 2019, Cell stem cell.

[3]  Alison R Erickson,et al.  Reduced MEK inhibition preserves genomic stability in naïve human ES cells , 2018, Nature Methods.

[4]  D. Weil,et al.  P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. , 2018, Trends in genetics : TIG.

[5]  M. Li,et al.  Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution , 2018, Cell reports.

[6]  Nicolas L. Fawzi,et al.  Protein Phase Separation: A New Phase in Cell Biology. , 2018, Trends in cell biology.

[7]  R. Blelloch,et al.  Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells , 2018, bioRxiv.

[8]  M. Bohnsack,et al.  Unravelling the Mechanisms of RNA Helicase Regulation. , 2018, Trends in biochemical sciences.

[9]  Bin Wang,et al.  Linc-ROR Promotes Osteogenic Differentiation of Mesenchymal Stem Cells by Functioning as a Competing Endogenous RNA for miR-138 and miR-145 , 2018, Molecular therapy. Nucleic acids.

[10]  Jernej Ule,et al.  The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency , 2018, Nature.

[11]  Yang Luo,et al.  P-Bodies: Composition, Properties, and Functions , 2018, Biochemistry.

[12]  Xin Huang,et al.  RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells , 2018, Nature Genetics.

[13]  Katie J. Clowers,et al.  Nudt21 Controls Cell Fate by Connecting Alternative Polyadenylation to Chromatin Signaling , 2018, Cell.

[14]  Jean-Baptiste Morlot,et al.  P-Body Purification Reveals the Condensation of Repressed mRNA Regulons. , 2017, Molecular cell.

[15]  Eric L Van Nostrand,et al.  CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins. , 2017, Methods.

[16]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[17]  D. Cirera-Salinas,et al.  Noncanonical function of DGCR8 controls mESC exit from pluripotency , 2017, The Journal of cell biology.

[18]  Austin G Smith Formative pluripotency: the executive phase in a developmental continuum , 2017, Development.

[19]  A. Giaccia,et al.  KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage , 2017, Nucleic acids research.

[20]  R. Jaenisch,et al.  Molecular Criteria for Defining the Naive Human Pluripotent State , 2016, Cell stem cell.

[21]  Steven P Gygi,et al.  Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources. , 2016, Journal of proteomics.

[22]  M. Perino,et al.  Chromatin Control of Developmental Dynamics and Plasticity. , 2016, Developmental cell.

[23]  Juan Carlos Izpisua Belmonte,et al.  Stem Cells: A Renaissance in Human Biology Research , 2016, Cell.

[24]  Rickard Sandberg,et al.  Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos , 2016, Cell.

[25]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[26]  Nevan J Krogan,et al.  CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. , 2016, Cell stem cell.

[27]  Gene W. Yeo,et al.  Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. , 2016, Cell reports.

[28]  Gene W. Yeo,et al.  Robust transcriptome-wide discovery of RNA binding protein binding sites with enhanced CLIP (eCLIP) , 2016, Nature Methods.

[29]  Cun-Yu Wang,et al.  Transforming Growth Factor‐β‐Induced KDM4B Promotes Chondrogenic Differentiation of Human Mesenchymal Stem Cells , 2015, Stem cells.

[30]  J. Hanna,et al.  Dynamic stem cell states: naive to primed pluripotency in rodents and humans , 2016, Nature Reviews Molecular Cell Biology.

[31]  Dong Ryul Lee,et al.  Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells. , 2015, Cell stem cell.

[32]  J. Lykke-Andersen,et al.  DDX6 Orchestrates Mammalian Progenitor Function through the mRNA Degradation and Translation Pathways. , 2015, Molecular cell.

[33]  H. Ng,et al.  Deterministic Restriction on Pluripotent State Dissolution by Cell-Cycle Pathways , 2015, Cell.

[34]  D. Weil,et al.  P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes , 2015, Molecular biology of the cell.

[35]  R. Brosh,et al.  Tbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm , 2015, Stem cell reports.

[36]  M. Serrano,et al.  The pluripotency factor NANOG promotes the formation of squamous cell carcinomas , 2015, Scientific Reports.

[37]  Erez Y. Levanon,et al.  m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation , 2015, Science.

[38]  A. del Sol,et al.  The RNA helicase DDX6 regulates cell-fate specification in neural stem cells via miRNAs , 2015, Nucleic Acids Research.

[39]  Austin G Smith,et al.  Mapping the route from naive pluripotency to lineage specification , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  Yi Xing,et al.  m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. , 2014, Cell stem cell.

[41]  Shogo Matoba,et al.  Embryonic Development following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation , 2014, Cell.

[42]  Graziano Martello,et al.  The nature of embryonic stem cells. , 2014, Annual review of cell and developmental biology.

[43]  R. Young,et al.  Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency , 2014, Cell stem cell.

[44]  Robert Blelloch,et al.  Regulation of pluripotency by RNA binding proteins. , 2014, Cell stem cell.

[45]  Jianlong Wang,et al.  RNA-binding proteins in pluripotency, differentiation, and reprogramming , 2014, Frontiers in Biology.

[46]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[47]  Edward L. Huttlin,et al.  MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes , 2014, Analytical chemistry.

[48]  Howard Y. Chang,et al.  Long noncoding RNAs in cell-fate programming and reprogramming. , 2014, Cell stem cell.

[49]  Xiaohui S. Xie,et al.  Fip1 regulates mRNA alternative polyadenylation to promote stem cell self‐renewal , 2014, The EMBO journal.

[50]  S. Dietmann,et al.  Genetic Exploration of the Exit from Self-Renewal Using Haploid Embryonic Stem Cells , 2014, Cell stem cell.

[51]  Alexander Meissner,et al.  The use of small molecules in somatic-cell reprogramming. , 2014, Trends in cell biology.

[52]  G. Daley,et al.  Distinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity. , 2014, Molecular cell.

[53]  Denis Thieffry,et al.  C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells , 2013, Nature.

[54]  H. Clevers,et al.  Retroviral gene expression control in primary organoid cultures. , 2013, Current protocols in stem cell biology.

[55]  Gene W. Yeo,et al.  Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges , 2013, Nature Structural &Molecular Biology.

[56]  K. Hochedlinger,et al.  Chromatin dynamics during cellular reprogramming , 2013, Nature.

[57]  Robert L. Judson,et al.  microRNA control of mouse and human pluripotent stem cell behavior. , 2013, Annual review of cell and developmental biology.

[58]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[59]  Pierre-Étienne Jacques,et al.  SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells , 2013, Nature Cell Biology.

[60]  Eric T. Wang,et al.  MBNL proteins repress ES-cell-specific alternative splicing and reprogramming , 2013, Nature.

[61]  Yue Wang,et al.  Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. , 2013, Developmental cell.

[62]  Edward Y. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[63]  Patrick J. Paddison,et al.  Exit from Pluripotency Is Gated by Intracellular Redistribution of the bHLH Transcription Factor Tfe3 , 2013, Cell.

[64]  Bradley E. Bernstein,et al.  Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues , 2013, Cell.

[65]  Andrew D. Sharrocks,et al.  A Genome-Wide RNAi Screen Reveals MAP Kinase Phosphatases as Key ERK Pathway Regulators during Embryonic Stem Cell Differentiation , 2012, PLoS genetics.

[66]  Jeanne F. Loring,et al.  The functions of microRNAs in pluripotency and reprogramming , 2012, Nature Cell Biology.

[67]  Gene W. Yeo,et al.  LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. , 2012, Molecular cell.

[68]  Anagha Joshi,et al.  Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal , 2012, Cell stem cell.

[69]  Roy Parker,et al.  P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. , 2012, Cold Spring Harbor perspectives in biology.

[70]  Edward L. Huttlin,et al.  Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. , 2012, Analytical chemistry.

[71]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[72]  Shuang Huang,et al.  AU-Rich-Element-Dependent Translation Repression Requires the Cooperation of Tristetraprolin and RCK/P54 , 2011, Molecular and Cellular Biology.

[73]  O. Klein,et al.  A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable , 2011, Nature.

[74]  Samira Kiani,et al.  Genetic engineering of human ES and iPS cells using TALE nucleases , 2011, Nature Biotechnology.

[75]  Austin G Smith,et al.  Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation , 2011, Nature Cell Biology.

[76]  J. Stamatoyannopoulos,et al.  Chromatin accessibility pre-determines glucocorticoid receptor binding patterns , 2011, Nature Genetics.

[77]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[78]  J. Rinn,et al.  Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells , 2010, Nature Genetics.

[79]  S. Lemon,et al.  DDX6 (Rck/p54) Is Required for Efficient Hepatitis C Virus Replication but Not for Internal Ribosome Entry Site-Directed Translation , 2010, Journal of Virology.

[80]  G. Stoecklin,et al.  On track with P-bodies. , 2010, Biochemical Society transactions.

[81]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[82]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[83]  Wei Li,et al.  BSMAP: whole genome bisulfite sequence MAPping program , 2009, BMC Bioinformatics.

[84]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[85]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[86]  Gene W. Yeo,et al.  An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells , 2009, Nature Structural &Molecular Biology.

[87]  P. Park,et al.  Design and analysis of ChIP-seq experiments for DNA-binding proteins , 2008, Nature Biotechnology.

[88]  K. Helin,et al.  Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. , 2008, Genes & development.

[89]  J. Keene RNA regulons: coordination of post-transcriptional events , 2007, Nature Reviews Genetics.

[90]  Roy Parker,et al.  P bodies and the control of mRNA translation and degradation. , 2007, Molecular cell.

[91]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[92]  Steven P Gygi,et al.  A probability-based approach for high-throughput protein phosphorylation analysis and site localization , 2006, Nature Biotechnology.

[93]  F. Slack,et al.  microRNA-Mediated Silencing Inside P Bodies , 2006, RNA biology.

[94]  Roy Parker,et al.  Movement of Eukaryotic mRNAs Between Polysomes and Cytoplasmic Processing Bodies , 2005, Science.

[95]  Eric L. Van Nostrand,et al.  Robust, Cost-Effective Profiling of RNA Binding Protein Targets with Single-end Enhanced Crosslinking and Immunoprecipitation (seCLIP). , 2017, Methods in molecular biology.

[96]  K. Zaret,et al.  H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes. , 2016, Trends in genetics : TIG.

[97]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[98]  P. Tesar,et al.  Isolation and maintenance of mouse epiblast stem cells. , 2010, Methods in molecular biology.