An Entropic Solver for Ideal Lagrangian Magnetohydrodynamics

In this paper, we adapt to the ideal 1D lagrangian MHD equations a class of numerical schemes of order one in time and space presented in an earlier paper and applied to the gas dynamics system. They use some properties of systems of conservation laws with zero entropy flux which describe fluid models invariant by galilean transformation and reversible for regular solutions. These numerical schemes satisfy an entropy inequality under CFL conditions. In the last section, we describe a particular scheme for the MHD equations and show with some numerical applications its robustness and accuracy. The generalization to full Eulerian multidimensional MHD will be the subject of a forthcoming paper.

[1]  Nikolai V. Pogorelov,et al.  Shock-Capturing Approach and Nonevolutionary Solutions in Magnetohydrodynamics , 1996 .

[2]  Claus-Dieter Munz,et al.  On Godunov-type schemes for Lagrangian gas dynamics , 1994 .

[3]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[4]  Fabienne Bezard Approximation numerique de problemes d'interfaces en mecanique des fluides , 1998 .

[5]  Rabia Khanfir Approximation volumes finis de type cinetique du systeme hyperbolique de la mhd ideale compressible a pression isotrope , 1995 .

[6]  Paul R. Woodward,et al.  An approximate Riemann solver for ideal magnetohydrodynamics , 1994 .

[7]  Lou‐Chuang Lee,et al.  The role of intermediate shocks in magnetic reconnection , 1992 .

[8]  Gérard Gallice,et al.  Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws , 1997 .

[9]  Lev Davidovich Landau,et al.  Electrodynamique des milieux continus , 1990 .

[10]  B. Després,et al.  Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de Lagrange , 1997 .

[11]  C. Wu,et al.  The small amplitude magnetohydrodynamic Riemann problem , 1993 .

[12]  Paul R. Woodward,et al.  A High-Order Godunov-Type Scheme for Shock Interactions in Ideal Magnetohydrodynamics , 1997, SIAM J. Sci. Comput..

[13]  P. Cargo,et al.  Construction d'une linéarisée de roe pour les équations de la MHD idéale , 1996 .

[14]  Structure des systèmes de lois de conservation en variables lagrangiennes , 1999 .