Convergence of Extreme Value Statistics in a Two-Layer Quasi-Geostrophic Atmospheric Model
暂无分享,去创建一个
[1] J. Hosking. L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .
[2] Andrew J. Majda,et al. Low-Order Stochastic Mode Reduction for a Realistic Barotropic Model Climate , 2005 .
[3] Alef E. Sterk,et al. Extreme value laws in dynamical systems under physical observables , 2011, 1107.5673.
[4] Maria Caterina Bramati,et al. Return levels of temperature extremes in southern Pakistan , 2017 .
[5] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[6] E. Lorenz. Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .
[7] S. Vannitsem,et al. Statistical properties of the temperature maxima in an intermediate order Quasi-Geostrophic model , 2007 .
[8] J. Holton. An introduction to dynamic meteorology , 2004 .
[9] Eric P. Smith,et al. An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.
[10] Mw Hirsch,et al. Chaos In Dynamical Systems , 2016 .
[11] Richard L. Smith,et al. Models for exceedances over high thresholds , 1990 .
[12] A. Agresti. An introduction to categorical data analysis , 1997 .
[13] R. Deidda. Rainfall downscaling in a space‐time multifractal framework , 2000 .
[14] M. R. Leadbetter,et al. Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .
[15] Johan Segers,et al. Inference for clusters of extreme values , 2003 .
[16] Giorgio Turchetti,et al. Numerical Convergence of the Block-Maxima Approach to the Generalized Extreme Value Distribution , 2011, 1103.0889.
[17] F. Massey. The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .
[18] Valerio Lucarini,et al. Extreme Value Statistics of the Total Energy in an Intermediate Complexity Model of the Mid-latitude Atmospheric Jet. Part I: Stationary case , 2006 .
[19] R. Fisher,et al. Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.
[20] United Kingdom,et al. Dynamical analysis of blocking events: spatial and temporal fluctuations of covariant Lyapunov vectors , 2015, 1508.04002.
[21] J. Galambos. Review: M. R. Leadbetter, Georg Lindgren and Holger Rootzen, Extremes and related properties of random sequences and processes , 1985 .
[22] Thomas Frisius,et al. A mechanism for the barotropic equilibration of baroclinic waves , 1998 .
[23] J. R. Wallis,et al. Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .
[24] S. Solomon. The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .
[25] H. Herzel. Chaotic Evolution and Strange Attractors , 1991 .
[26] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[27] D. Sloane,et al. An Introduction to Categorical Data Analysis , 1996 .
[28] Vladimir Kossobokov,et al. Extreme events: dynamics, statistics and prediction , 2011 .
[29] S. Coles,et al. An Introduction to Statistical Modeling of Extreme Values , 2001 .
[30] Richard L. Smith. Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .
[31] Valerio Lucarini,et al. Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems , 2013, Journal of statistical physics.
[32] Ana Cristina Moreira Freitas,et al. Hitting time statistics and extreme value theory , 2008, 0804.2887.
[33] D. Darling,et al. A Test of Goodness of Fit , 1954 .
[34] Valerio Lucarini,et al. Universal Behaviour of Extreme Value Statistics for Selected Observables of Dynamical Systems , 2011, 1110.0176.
[35] Malcolm R Leadbetter,et al. On extreme values in stationary sequences , 1974 .
[36] L. Haan,et al. Residual Life Time at Great Age , 1974 .
[37] E. Ott. Chaos in Dynamical Systems: Contents , 2002 .
[38] Giorgio Turchetti,et al. Extreme value theory for singular measures. , 2012, Chaos.
[39] Tamás Bódai,et al. Extreme Value Analysis in dynamical systems: two case studies , 2017 .
[40] Henning W. Rust,et al. The effect of long-range dependence on modelling extremes with the generalised extreme value distribution , 2009 .
[41] Demetris Koutsoyiannis,et al. Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records / Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: II. Recherche empirique sur de longues séries de précipitations , 2004 .
[42] United Kingdom,et al. Covariant Lyapunov vectors of a quasi‐geostrophic baroclinic model: analysis of instabilities and feedbacks , 2014, 1410.1367.
[43] Demetris Koutsoyiannis,et al. Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation / Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: I. Recherche théorique , 2004 .
[44] Patrick F. Dunn,et al. Measurement and Data Analysis for Engineering and Science , 2017 .
[45] Norman A. Phillips,et al. The general circulation of the atmosphere: A numerical experiment , 1956 .
[46] Valerio Lucarini,et al. Extremes and Recurrence in Dynamical Systems , 2016, 1605.07006.
[47] Giorgio Turchetti,et al. Extreme Value distribution for singular measures , 2011, 1106.2299.
[48] Giovanni Gallavotti,et al. Nonequilibrium and Irreversibility , 2013, 1311.6448.
[49] Yakov Pesin,et al. Dimension and product structure of hyperbolic measures , 1999 .
[50] J. Pickands. Statistical Inference Using Extreme Order Statistics , 1975 .
[51] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .
[52] E. Cohen,et al. Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.