Convergence of Extreme Value Statistics in a Two-Layer Quasi-Geostrophic Atmospheric Model

We search for the signature of universal properties of extreme events, theoretically predicted for Axiom A flows, in a chaotic and high-dimensional dynamical system. We study the convergence of GEV (Generalized Extreme Value) and GP (Generalized Pareto) shape parameter estimates to the theoretical value, which is expressed in terms of the partial information dimensions of the attractor. We consider a two-layer quasi-geostrophic atmospheric model of the mid-latitudes, adopt two levels of forcing, and analyse the extremes of different types of physical observables (local energy, zonally averaged energy, and globally averaged energy). We find good agreement in the shape parameter estimates with the theory only in the case of more intense forcing, corresponding to a strong chaotic behaviour, for some observables (the local energy at every latitude). Due to the limited (though very large) data size and to the presence of serial correlations, it is difficult to obtain robust statistics of extremes in the case of the other observables. In the case of weak forcing, which leads to weaker chaotic conditions with regime behaviour, we find, unsurprisingly, worse agreement with the theory developed for Axiom A flows.

[1]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[2]  Andrew J. Majda,et al.  Low-Order Stochastic Mode Reduction for a Realistic Barotropic Model Climate , 2005 .

[3]  Alef E. Sterk,et al.  Extreme value laws in dynamical systems under physical observables , 2011, 1107.5673.

[4]  Maria Caterina Bramati,et al.  Return levels of temperature extremes in southern Pakistan , 2017 .

[5]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[6]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[7]  S. Vannitsem,et al.  Statistical properties of the temperature maxima in an intermediate order Quasi-Geostrophic model , 2007 .

[8]  J. Holton An introduction to dynamic meteorology , 2004 .

[9]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[10]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[11]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[12]  A. Agresti An introduction to categorical data analysis , 1997 .

[13]  R. Deidda Rainfall downscaling in a space‐time multifractal framework , 2000 .

[14]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[15]  Johan Segers,et al.  Inference for clusters of extreme values , 2003 .

[16]  Giorgio Turchetti,et al.  Numerical Convergence of the Block-Maxima Approach to the Generalized Extreme Value Distribution , 2011, 1103.0889.

[17]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[18]  Valerio Lucarini,et al.  Extreme Value Statistics of the Total Energy in an Intermediate Complexity Model of the Mid-latitude Atmospheric Jet. Part I: Stationary case , 2006 .

[19]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  United Kingdom,et al.  Dynamical analysis of blocking events: spatial and temporal fluctuations of covariant Lyapunov vectors , 2015, 1508.04002.

[21]  J. Galambos Review: M. R. Leadbetter, Georg Lindgren and Holger Rootzen, Extremes and related properties of random sequences and processes , 1985 .

[22]  Thomas Frisius,et al.  A mechanism for the barotropic equilibration of baroclinic waves , 1998 .

[23]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[24]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[25]  H. Herzel Chaotic Evolution and Strange Attractors , 1991 .

[26]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[27]  D. Sloane,et al.  An Introduction to Categorical Data Analysis , 1996 .

[28]  Vladimir Kossobokov,et al.  Extreme events: dynamics, statistics and prediction , 2011 .

[29]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[30]  Richard L. Smith Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .

[31]  Valerio Lucarini,et al.  Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems , 2013, Journal of statistical physics.

[32]  Ana Cristina Moreira Freitas,et al.  Hitting time statistics and extreme value theory , 2008, 0804.2887.

[33]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[34]  Valerio Lucarini,et al.  Universal Behaviour of Extreme Value Statistics for Selected Observables of Dynamical Systems , 2011, 1110.0176.

[35]  Malcolm R Leadbetter,et al.  On extreme values in stationary sequences , 1974 .

[36]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[37]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .

[38]  Giorgio Turchetti,et al.  Extreme value theory for singular measures. , 2012, Chaos.

[39]  Tamás Bódai,et al.  Extreme Value Analysis in dynamical systems: two case studies , 2017 .

[40]  Henning W. Rust,et al.  The effect of long-range dependence on modelling extremes with the generalised extreme value distribution , 2009 .

[41]  Demetris Koutsoyiannis,et al.  Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records / Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: II. Recherche empirique sur de longues séries de précipitations , 2004 .

[42]  United Kingdom,et al.  Covariant Lyapunov vectors of a quasi‐geostrophic baroclinic model: analysis of instabilities and feedbacks , 2014, 1410.1367.

[43]  Demetris Koutsoyiannis,et al.  Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation / Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: I. Recherche théorique , 2004 .

[44]  Patrick F. Dunn,et al.  Measurement and Data Analysis for Engineering and Science , 2017 .

[45]  Norman A. Phillips,et al.  The general circulation of the atmosphere: A numerical experiment , 1956 .

[46]  Valerio Lucarini,et al.  Extremes and Recurrence in Dynamical Systems , 2016, 1605.07006.

[47]  Giorgio Turchetti,et al.  Extreme Value distribution for singular measures , 2011, 1106.2299.

[48]  Giovanni Gallavotti,et al.  Nonequilibrium and Irreversibility , 2013, 1311.6448.

[49]  Yakov Pesin,et al.  Dimension and product structure of hyperbolic measures , 1999 .

[50]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[51]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[52]  E. Cohen,et al.  Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.