A Robust Transcortical Profile Scanner for Generating 2-D Traverses in Histological Sections of Richly Curved Cortical Courses

Quantitative analysis of the cerebral cortex has become more important since neuroimaging methods have revealed many subfunctions of cortical regions that were thought to be typical for only one specific function. Furthermore, it is often unknown if a certain area may be subdivided observer independently into subareas. These questions lead to an analytical problem. How can we analyze the cytoarchitecture of the human cerebral cortex in a quantitative manner in order to confirm classical transition regions between distinct areas and to detect new ones. Scanning the cerebral cortex is difficult because it presents a richly curved course and sectioning always leads to partially nonperpendicular sectioned regions of the tissue. Therefore, different methods were tested to determine which of them are most reliable with respect to generating perpendicular testlines in the cerebral cortex. We introduce a new technique based on electrical field theory. The results of this technique are compared with those of conventional techniques. It was found that straight traverses generated by the electrodynamic model present significantly smaller intertraversal differences than the conventional approaches.

[1]  M. West,et al.  Total number of neurons in the layers of the human entorhinal cortex , 1998, Hippocampus.

[2]  Heinz-Otto Peitgen,et al.  Projecting the sulcal pattern of human brains onto a 2D plane — a new approach using potential theory and MRI , 1998, Psychiatry Research: Neuroimaging.

[3]  C. Duyckaerts,et al.  Cytoarchitectonic alterations in the supramarginal gyrus of late onset Alzheimer’s disease , 1998, Acta Neuropathologica.

[4]  G. Bonin,et al.  The isocortex of man , 1951 .

[5]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[6]  A. Schleicher,et al.  The Somatosensory Cortex of Human: Cytoarchitecture and Regional Distributions of Receptor-Binding Sites , 1997, NeuroImage.

[7]  Karl Zilles,et al.  Estimation of volume fractions in nervous tissue with an image analyzer , 1982, Journal of Neuroscience Methods.

[8]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[9]  Smith Ge,et al.  A New Topographical Survey of the Human Cerebral Cortex, being an Account of the Distribution of the Anatomically Distinct Cortical Areas and their Relationship to the Cerebral Sulci. , 1907 .

[10]  E. Schrödinger Theoretische Mechanik , 1913 .

[11]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[12]  A. Schleicher,et al.  Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. , 1995, Journal of anatomy.

[13]  Katrin Amunts,et al.  Postnatal development of the human primary motor cortex: a quantitative cytoarchitectonic analysis , 1995, Anatomy and Embryology.

[14]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[15]  M J West,et al.  Hippocampus of the domestic pig: A stereological study of subdivisional volumes and neuron numbers , 1994, Hippocampus.

[16]  Eric L. Schwartz,et al.  Computer-Aided Neuroanatomy: Differential Geometry of Cortical Surfaces and an Optimal Flattening Algorithm , 1986, IEEE Computer Graphics and Applications.

[17]  E. Mettler,et al.  Schmidt, G., Parametererregte Schwingungen, Berlin. VEB Deutscher Verlag der Wissenschaften, 1975. 313 S., 55 Abb., M 62,- . , 1977 .

[18]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[19]  H. Haug History of neuromorphometry , 1986, Journal of Neuroscience Methods.

[20]  O Schmitt,et al.  High contrast and homogeneous staining of paraffin sections of whole human brains for three dimensional ultrahigh resolution image analysis. , 1998, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[21]  H. Gundersen,et al.  Unbiased stereological estimation of the number of neurons in the human hippocampus , 1990, The Journal of comparative neurology.

[22]  Jerry L. Prince,et al.  Reconstruction of the human cerebral cortex from magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[23]  W. H. Reid,et al.  The Theory of Elasticity , 1960 .

[24]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[25]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[26]  J. Troncoso,et al.  Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease , 1994, The Lancet.

[27]  Peter Deuflhard,et al.  Numerische Mathematik. I , 2002 .

[28]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[29]  R. Eggers,et al.  Flat‐bed scanning as a tool for quantitative neuroimaging , 1999, Journal of microscopy.

[30]  G. Godefroy,et al.  Evaluation of neuronal numerical density by Dirichlet tessellation , 1994, Journal of Neuroscience Methods.

[31]  M. Zahn Electromagnetic field theory , 1979 .

[32]  Paul D. Coleman,et al.  Estimating the number of granule cells in the dentate gyrus with the disector , 1988, Brain Research.

[33]  Jan Modersitzki THE HUMAN NEUROSCANNING PROJECT , 2003 .

[34]  B. Pakkenberg,et al.  Neocortical neuron number in humans: Effect of sex and age , 1997, The Journal of comparative neurology.

[35]  N Palomero-Gallagher,et al.  Receptor autoradiographic mapping of the mesial motor and premotor cortex of the macaque monkey , 1998, The Journal of comparative neurology.

[36]  Mark J. West,et al.  Regionally specific loss of neurons in the aging human hippocampus , 1993, Neurobiology of Aging.

[37]  I. S. Solkolnikoff Mathematical theory of elasticity , 1974 .

[38]  CYRUS LEVINTHAL,et al.  Three Dimensional Reconstruction from Serial Sections , 1972, Nature.

[39]  A J Hudspeth,et al.  Cytoarchitectonic mapping by microdensitometry. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Bok Histonomy of the cerebral cortex , 1959 .

[41]  K. Zilles,et al.  Structural divisions and functional fields in the human cerebral cortex 1 Published on the World Wide Web on 20 February 1998. 1 , 1998, Brain Research Reviews.

[42]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[43]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[44]  K Amunts,et al.  A stereological approach to human cortical architecture: identification and delineation of cortical areas , 2000, Journal of Chemical Neuroanatomy.

[45]  M J West,et al.  Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. , 1990, Progress in brain research.

[46]  O Schmitt,et al.  Systematic investigations of the contrast results of histochemical stainings of neurons and glial cells in the human brain by means of image analysis. , 1997, Micron.

[47]  Katrin Amunts,et al.  An observer-independent cytoarchitectonic mapping of the human cortex using a stereological approach , 1998 .

[48]  B Sauer,et al.  Semi‐automatic analysis of microscopic images of the human cerebral cortex using the grey level index , 1983, Journal of microscopy.

[49]  I. H. Coriat,et al.  Histological Studies on the Localization of Cerebral Function , 1906 .

[50]  J. Maunsell,et al.  Two‐dimensional maps of the cerebral cortex , 1980, The Journal of comparative neurology.

[51]  K Zilles,et al.  A quantitative approach to cytoarchitectonics. VII. The areal pattern of the cortex of the Guinea pig. , 1981, Anatomy and embryology.

[52]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[53]  Thomas W. Sederberg,et al.  Conversion of complex contour line definitions into polygonal element mosaics , 1978, SIGGRAPH.

[54]  K Zilles,et al.  A quantitative approach to cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. , 1980, Anatomy and embryology.

[55]  Michael S. Gazzaniga,et al.  Brainprints: Computer-Generated Two-Dimensional Maps of the Human Cerebral Cortex in vivo , 1989, Journal of Cognitive Neuroscience.

[56]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[57]  Karl Zilles,et al.  Postnatal development of interhemispheric asymmetry in the cytoarchitecture of human area 4 , 1997, Anatomy and Embryology.

[58]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[59]  Karl Zilles,et al.  A quantitative approach to cytoarchitectonics , 2004, Anatomy and Embryology.

[60]  H. Adhami Die photometrische Bestimmung des Cortexzell- und Graugehalts auf der Grundlage des Nissl-Bildes , 1973 .

[61]  H. Gundersen,et al.  Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator , 1991, The Anatomical record.

[62]  K Zilles,et al.  A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser , 1990, Journal of microscopy.

[63]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.

[64]  Richard Phillips Feynman,et al.  Feynman lectures on physics - Volume 1 , 1963 .

[65]  K Zilles,et al.  Limbic frontal cortex in hominoids: a comparative study of area 13. , 1998, American journal of physical anthropology.

[66]  T Schormann,et al.  Three‐Dimensional linear and nonlinear transformations: An integration of light microscopical and MRI data , 1998, Human brain mapping.

[67]  H A Drury,et al.  Computational methods for reconstructing and unfolding the cerebral cortex. , 1995, Cerebral cortex.

[68]  Lewis D. Griffin The intrinsic geometry of the cerebral cortex. , 1994, Journal of theoretical biology.