Kernel Discriminant Analysis for Positive Definite and Indefinite Kernels
暂无分享,去创建一个
[1] Ali H. Sayed,et al. Linear Estimation in Krein Spaces - Part I: Theory , 1996 .
[2] J. Bognár,et al. Indefinite Inner Product Spaces , 1974 .
[3] Klaus-Robert Müller,et al. Feature Discovery in Non-Metric Pairwise Data , 2004, J. Mach. Learn. Res..
[4] Bernard Victorri,et al. Transformation invariance in pattern recognition: Tangent distance and propagation , 2000 .
[5] N. JARDINE,et al. A New Approach to Pattern Recognition , 1971, Nature.
[6] Alexander J. Smola,et al. Learning with non-positive kernels , 2004, ICML.
[7] Bernhard Schölkopf,et al. Learning with kernels , 2001 .
[8] Hans Burkhardt,et al. Invariant kernel functions for pattern analysis and machine learning , 2007, Machine Learning.
[9] S. Canu,et al. Functional learning through kernel , 2002 .
[10] Alexander J. Smola,et al. Learning with kernels , 1998 .
[11] Anil K. Jain,et al. A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.
[12] J. Gower,et al. Metric and Euclidean properties of dissimilarity coefficients , 1986 .
[13] S. Canu,et al. M L ] 6 O ct 2 00 9 Functional learning through kernel , 2009 .
[14] James Rovnyak,et al. Operators on indefinite inner product spaces , 1995 .
[15] Daphna Weinshall,et al. Classification with Nonmetric Distances: Image Retrieval and Class Representation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[16] Ulrike von Luxburg,et al. Distance-Based Classification with Lipschitz Functions , 2004, J. Mach. Learn. Res..
[17] Bernard Haasdonk,et al. Feature space interpretation of SVMs with indefinite kernels , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[18] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[19] G. Wahba. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV , 1999 .
[20] Robert P. W. Duin,et al. The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.
[21] T. Kailath,et al. Linear estimation in Krein spaces. I. Theory , 1996, IEEE Trans. Autom. Control..
[22] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[23] Su-Yun Huang,et al. Kernel Fisher ’ s Discriminant Analysis in Gaussian Reproducing Kernel , 2005 .
[24] Xavier Mary. Moore-Penrose Inverse in Kreĭn Spaces , 2008 .
[25] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[26] Bernard Haasdonk,et al. Transformation knowledge in pattern analysis with kernel methods: distance and integration kernels , 2006 .
[28] Jie Wang,et al. Kernel quadratic discriminant analysis for small sample size problem , 2008, Pattern Recognit..
[29] Elzbieta Pekalska,et al. Indefinite Kernel Fisher Discriminant , 2008, 2008 19th International Conference on Pattern Recognition.
[30] Bernhard Schölkopf,et al. Kernel Methods in Computational Biology , 2005 .
[31] Bernhard Schölkopf,et al. An improved training algorithm for kernel Fisher discriminants , 2001, AISTATS.
[32] J. Rovnyak. Methods of Kreĭn Space Operator Theory , 2002 .
[33] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[34] Pedro E. López-de-Teruel,et al. Nonlinear kernel-based statistical pattern analysis , 2001, IEEE Trans. Neural Networks.
[35] Matthias Hein,et al. Maximal Margin Classification for Metric Spaces , 2003, COLT.
[36] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2003, ICTAI.
[37] Yann LeCun,et al. Transformation Invariance in Pattern Recognition-Tangent Distance and Tangent Propagation , 1996, Neural Networks: Tricks of the Trade.
[38] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[39] Daniel Lee,et al. Large-Margin Classification in Banach Spaces , 2007, AISTATS.
[40] Horst Bunke,et al. Non-Euclidean or Non-metric Measures Can Be Informative , 2006, SSPR/SPR.
[41] Joachim M. Buhmann,et al. Going Metric: Denoising Pairwise Data , 2002, NIPS.
[42] Klaus Obermayer,et al. Support Vector Machines for Dyadic Data , 2006, Neural Computation.
[43] B. Scholkopf,et al. Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).
[44] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[45] LuxburgUlrike von,et al. Distance--Based Classification with Lipschitz Functions , 2004 .
[46] R. Duin,et al. The dissimilarity representation for pattern recognition , a tutorial , 2009 .