Broad ranges and fast responses of single-component blue-phase liquid crystals containing banana-shaped 1,3,4-oxadiazole cores.

In this study, we synthesized two novel 1,3,4-oxadiazole-based bent-core liquid crystals (OXD7*, OXD5B7F*) containing a chiral tail that display broad ranges of the blue phase III (34 and 7 K, respectively); we characterized them using polarized optical microscopy, differential scanning calorimetry, and circular dichroism. The electro-optical responses of both of these liquid crystals are much faster than those of previously reported single-component blue-phase liquid crystals. To optimize its electro-optical performance, we mixed OXD7* (the blue-phase range of which is broader than that of OXD5B7F*) with its analogue OXD6 (at weight ratios of 6:4 and 4:6). We also performed molecular modeling of single-component BPLCs (OXD7* and OXD5B7F*) to analyze the possible parameters affecting their blue phase ranges.

[1]  Suk‐Won Choi,et al.  Liquid-crystalline blue phase II system comprising a bent-core molecule with a wide stable temperature range. , 2013, ACS applied materials & interfaces.

[2]  Kevin E. Shopsowitz,et al.  Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals. , 2013, ACS applied materials & interfaces.

[3]  T. Peijs,et al.  New approach toward reflective films and fibers using cholesteric liquid-crystal coatings. , 2013, ACS applied materials & interfaces.

[4]  K. Ishikawa,et al.  Are chiral dopants with higher twisting power advantageous to induce wider temperature range of the blue phases? , 2013 .

[5]  Mei-ju Wei,et al.  Effects of symmetrically 2,5-disubstituted 1,3,4-oxadiazoles on the temperature range of liquid crystalline blue phases: a systematic study , 2013 .

[6]  Y. Okahata,et al.  Polymer nanoparticle-protein interface. Evaluation of the contribution of positively charged functional groups to protein affinity. , 2013, ACS applied materials & interfaces.

[7]  Wanli He,et al.  Effect of lateral fluoro substituents of rodlike tolane cyano mesogens on blue phase temperature ranges , 2013 .

[8]  A. Yoshizawa,et al.  U-shaped oligomers with a molecular biaxiality stabilizing blue phases , 2013 .

[9]  Haifeng Yu,et al.  Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles , 2012 .

[10]  I. Dierking,et al.  Stabilising liquid crystalline Blue Phases , 2012 .

[11]  J. Fukuda Stabilization of blue phases by the variation of elastic constants. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Wanli He,et al.  Wide blue phase range and electro-optical performances of liquid crystalline composites doped with thiophene-based mesogens , 2012 .

[13]  T. Hirose,et al.  Biphenyl derivative stabilizing blue phases , 2011 .

[14]  T. Hirose,et al.  Amorphous Blue Phase III Exhibiting Submillisecond Response and Hysteresis-Free Switching at Room Temperature , 2011 .

[15]  Hyun-Chul Choi,et al.  Retardation Free In-plane Switching Liquid Crystal Display with High Speed and Wide-view Angle , 2011 .

[16]  Shin-Tson Wu,et al.  A large Kerr constant polymer-stabilized blue phase liquid crystal , 2011 .

[17]  K. Ishikawa,et al.  Liquid crystalline amorphous blue phase and its large electrooptical Kerr effect , 2011 .

[18]  D. Shen,et al.  Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules , 2010 .

[19]  Suk‐Won Choi,et al.  Liquid crystalline blue phase I observed for a bent-core molecule and its electro-optical performance , 2010 .

[20]  H. Takezoe,et al.  Stable Amorphous Blue Phase of Bent-Core Nematic Liquid Crystals Doped with a Chiral Material , 2010 .

[21]  Carsten Tschierske,et al.  Biaxial nematic phases , 2010 .

[22]  C. Glorieux,et al.  Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Tsung-Hsien Lin,et al.  Optically tuneable blue phase photonic band gaps , 2010 .

[24]  A. Yoshizawa Liquid Crystal Oligomers Exhibiting a Blue Phase , 2010 .

[25]  T. Hirose,et al.  Chiral T-shaped Semiflexible Compound Exhibiting a Wide Temperature Range Blue Phase III , 2010 .

[26]  Hiroyuki Yoshida,et al.  Nanoparticle-Stabilized Cholesteric Blue Phases , 2009 .

[27]  F. Castles,et al.  High contrast chiral nematic liquid crystal device using negative dielectric material , 2009 .

[28]  A. Yoshizawa,et al.  Structure-Property Relationships in Non-Chiral Liquid Crystal Oligomers Stabilizing Blue Phases , 2009 .

[29]  A. Gedanken,et al.  Enantioselective separation using chiral mesoporous spherical silica prepared by templating of chiral block copolymers. , 2009, ACS applied materials & interfaces.

[30]  Y. Takanishi,et al.  A binaphthyl derivative with a wide temperature range of a blue phase , 2009 .

[31]  W. Huang,et al.  Wide Blue Phase Range in a Hydrogen‐Bonded Self‐Assembled Complex of Chiral Fluoro‐Substituted Benzoic Acid and Pyridine Derivative , 2009 .

[32]  Hiroyasu Masunaga,et al.  Control of Cross-Linking Polymerization Kinetics and Polymer Aggregated Structure in Polymer-Stabilized Liquid Crystalline Blue Phases , 2009 .

[33]  A. Yoshizawa Molecular design for stabilizing a blue phase III and electro‐optical switching in the blue phase , 2008 .

[34]  Atsushi Yoshizawa,et al.  Unconventional liquid crystal oligomers with a hierarchical structure , 2008 .

[35]  M. Sato,et al.  Electro‐Optical Switching in a Blue Phase III Exhibited by a Chiral Liquid Crystal Oligomer , 2007 .

[36]  Haksoo Han,et al.  Synthesis, computational modelling and liquid crystalline properties of some [3]ferrocenophane-containing Schiff's bases and β-aminovinylketone: Molecular geometry-phase behaviour relationship , 2007 .

[37]  H. Kikuchi Liquid Crystalline Blue Phases , 2007 .

[38]  Fanbao Meng,et al.  Optical characterization of polymer liquid crystal cell exhibiting polymer blue phases. , 2007, Optics express.

[39]  S. K. Prasad,et al.  Frustrated Liquid Crystals: Synthesis and Mesomorphic Behavior of Unsymmetrical Dimers Possessing Chiral and Fluorescent Entities , 2007 .

[40]  M. A. Bates,et al.  Bent core molecules and the biaxial nematic phase: A transverse dipole widens the optimal angle , 2007 .

[41]  S. K. Prasad,et al.  Blue Phase, Smectic Fluids, and Unprecedented Sequences in Liquid Crystal Dimers , 2006 .

[42]  J. Yeomans,et al.  Stabilizing the blue phases. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  U. Singh Entropy calculations for a supercooled liquid crystalline blue phase , 2006 .

[44]  Harry J. Coles,et al.  Liquid crystal ‘blue phases’ with a wide temperature range , 2005, Nature.

[45]  A. Yoshizawa,et al.  A blue phase observed for a novel chiral compound possessing molecular biaxiality , 2005 .

[46]  G. R. Luckhurst V-shaped molecules: new contenders for the biaxial nematic phase. , 2005, Angewandte Chemie.

[47]  P. Collings,et al.  Trans-cis isomerization and the blue phases. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  H. Gallardo,et al.  A new synthetic approach based on (−)-menthone for chiral liquid crystals , 2004 .

[49]  Hsiao-Hsien Sung,et al.  Effect of polar substituents on the properties of 1,3,4-oxadiazole-based liquid crystalline materials containing asymmetric cores , 2004 .

[50]  E. Samulski,et al.  Thermotropic biaxial nematic liquid crystals. , 2004, Physical review letters.

[51]  Y. Takanishi,et al.  Blue phases induced by doping chiral nematic liquid crystals with nonchiral molecules. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  J. Watanabe,et al.  Enhancement of twisting power in the chiral nematic phase by introducing achiral banana-shaped molecules. , 2002, Journal of the American Chemical Society.

[53]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[54]  A. Saupe,et al.  Surface-imaging of frozen blue phases in a discotic liquid crystal with atomic force microscopy , 1997 .

[55]  Miller,et al.  Many-Wave Light Scattering Features in Blue-Phase Kossel Diagrams and the Phase Problem. , 1996, Physical review letters.

[56]  H. Kitzerow,et al.  First Observation of Selective Reflection and Blue Phases in Chiral Discotic Liquid Crystals , 1993 .

[57]  J. Gilli,et al.  Quenched Blue Phase, Below the Glass Transition of a Side Chain Polysiloxane: Electron Microscope Studies , 1991 .

[58]  J. Stewart Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi , 1991 .

[59]  N. David Mermin,et al.  Crystalline liquids: the blue phases , 1989 .

[60]  P. Pieranski,et al.  Kossel diagrams of blue phases , 1989 .

[61]  D. Monselesan,et al.  Phase diagrams of cholesteric liquid crystals obtained with a generalized Landau-de Gennes theory , 1989 .

[62]  Pieranski,et al.  Kossel diagrams show electric-field-induced cubic-tetragonal structural transition in frustrated liquid-crystal blue phases. , 1986, Physical review letters.

[63]  V. Belyakov,et al.  The blue phase of liquid crystals , 1985 .

[64]  H. Grebel,et al.  Landau theory of cholesteric blue phases: The role of higher harmonics , 1984 .

[65]  R. Hornreich,et al.  Landau theory of cholesteric blue phases , 1983 .

[66]  R. Hornreich,et al.  Theory of structure and properties of cholesteric blue phases , 1981 .

[67]  H. Kleinert,et al.  Lattice Textures in Cholesteric Liquid Crystals , 1981 .

[68]  W. Kossel,et al.  Die Richtungsverteilung der in einem Kristall entstandenen charakteristischen Röntgenstrahlung , 1935 .