Systematic scenario selection: stress testing and the nature of uncertainty

We present a technique for selecting multidimensional shock scenarios for use in financial stress testing. The methodology systematically enforces internal consistency among the shock dimensions by sampling points of arbitrary severity from a plausible joint probability distribution. The approach involves a grid search of sparse, well distributed, stress-test scenarios, which we regard as a middle ground between traditional stress testing and reverse stress testing. Choosing scenarios in this way reduces the danger of 'blind spots' in stress testing. We suggest extensions to address the issues of non-monotonic loss functions and univariate shocks. We provide tested and commented source code in Matlab-super-®.

[1]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[2]  D. Rubin,et al.  ML ESTIMATION OF THE t DISTRIBUTION USING EM AND ITS EXTENSIONS, ECM AND ECME , 1999 .

[3]  Claudio Borio,et al.  Stress-Testing Macro Stress Testing: Does it Live Up to Expectations? , 2012 .

[4]  Marshall W. Bern,et al.  Mesh Generation , 2020, Handbook of Computational Geometry.

[5]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[6]  Andrew W. Lo,et al.  Risk Management for Hedge Funds: Introduction and Overview , 2001 .

[7]  Gerold Studer Market risk computation for nonlinear portfolios , 1999 .

[8]  C. Alexander Market risk analysis II: practical financial econometrics , 2008 .

[9]  N. Bingham,et al.  Semi-parametric modelling in finance: theoretical foundations , 2002 .

[10]  Matthew T. Jones,et al.  Stress Testing Financial Systems: What to Do When the Governor Calls , 2004, SSRN Electronic Journal.

[11]  H. Peyton Young,et al.  Gaming Performance Fees By Portfolio Managers , 2010 .

[12]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[13]  Rizwan Ahmad,et al.  Quasi Monte Carlo-based isotropic distribution of gradient directions for improved reconstruction quality of 3D EPR imaging. , 2007, Journal of magnetic resonance.

[14]  Paul Glasserman,et al.  Stress Tests to Promote Financial Stability: Assessing Progress and Looking to the Future , 2013, Journal of Risk Management in Financial Institutions.

[15]  Rafael Schmidt,et al.  A semi-parametric approach to risk management , 2003 .

[16]  Filip Pistovcak,et al.  Using Quasi-Monte Carlo Scenarios in Risk Management* , 2004 .

[17]  Frank Bretz,et al.  Comparison of Methods for the Computation of Multivariate t Probabilities , 2002 .

[18]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[19]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .

[20]  J. D. Villiers Portfolio Performance Manipulation and Manipulation-Proof Performance Measures , 2008 .

[21]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[22]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[23]  M. Filipiak Mesh Generation , 2007 .

[24]  Jon Hamkins,et al.  Design and analysis of spherical codes , 1996 .

[25]  Jinggang Huang,et al.  Finding Stress Scenarios that Get the Job Done, with a Credit Risk Application , 2010 .

[26]  Paul C. Leopardi Distributing points on the sphere: partitions, separation, quadrature and energy , 2007 .

[27]  Zhenzhong Chen,et al.  Spherical basis functions and uniform distribution of points on spheres , 2008, J. Approx. Theory.

[28]  Cheolyong Park,et al.  A test for elliptical symmetry , 2007 .

[29]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[30]  T. Andersen THE ECONOMETRICS OF FINANCIAL MARKETS , 1998, Econometric Theory.

[31]  A Short Guide to Managing Risk in Worst Case Scenarios , 2007 .

[32]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[33]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[34]  Gabriel Frahm Generalized Elliptical Distributions: Theory and Applications , 2004 .

[35]  Matthew T. Jones,et al.  Stress Testing of Financial Systems: An Overview of Issues, Methodologies, and Fsap Experiences , 2001, SSRN Electronic Journal.

[36]  W. LoAndrew,et al.  Risk Management for Hedge Funds: Introduction and Overview , 2006 .

[37]  Marco Sorge,et al.  Stress-Testing Financial Systems: An Overview of Current Methodologies , 2004 .

[38]  Rodrigo Alfaro,et al.  Macro Stress Tests and Crises: What Can We Learn? , 2012 .

[39]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[40]  Gerold Studer,et al.  Maximum Loss for Measurement of Market Risk , 1997 .

[41]  Mathias Drehmann,et al.  Stress-testing the Banking System: Macroeconomic stress-testing banks: a survey of methodologies , 2009 .

[42]  S. Smale Mathematical problems for the next century , 1998 .

[43]  Martin Čihák,et al.  Introduction to Applied Stress Testing , 2007, SSRN Electronic Journal.

[44]  V. Agarwal,et al.  Risks and Portfolio Decisions Involving Hedge Funds , 2004 .

[45]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[46]  M. Pritsker,et al.  Enhanced Stress Testing and Financial Stability , 2012 .

[47]  Enrique Bendito,et al.  Computational cost of the Fekete problem I: The Forces Method on the 2-sphere , 2009, J. Comput. Phys..

[48]  Anne Lohrli Chapman and Hall , 1985 .

[49]  S. Claessens International Financial Contagion: The Theory, Evidence and Policy Implications , 2004 .

[50]  Klaus Rheinberger,et al.  How to Find Plausible, Severe and Useful Stress Scenarios , 2012 .

[51]  David E. Tyler A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .