A NEW FACET IN RHODOPSIN PHOTOCHEMISTRY

Abstract— A structure is proposed for the prosthetic group of the visual pigments rhodopsin, prelumirhodopsin (bathorhodopsin) and lumirhodopsin. The intrinsic photochemical step in this model is tautomerization of the prosthetic group of rhodopsin to a hexaeneamine retrotautomer with an exomethylene group for prelumirhodopsin. Based on the proposed structures, molecular orbital calculations were carried out; the absorption maxima calculated snowed the same trends as the Λmax values observed. An exact fit was not obtained because many interactions had to be neglected. Essential information of the laser Raman resonance spectrum of prelumirhodopsin can be interpreted based on the structures proposed by our model.

[1]  K. Nakanishi,et al.  Letter: Allenic retinals and visual pigment analogues. , 1976, Journal of the American Chemical Society.

[2]  D. Oesterhelt Bacteriorhodopsin als Beispiel einer lichtgetriebenen Protonenpumpe , 1976 .

[3]  B. Honig,et al.  Molecular aspects of photoreceptor function , 1975, Quarterly Reviews of Biophysics.

[4]  K. Nakanishi,et al.  Isorhodopsin II: artificial photosensitive pigment formed from 9,13-dicis retinal. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. Knowles The enigmatic protein , 1975, Nature.

[6]  K. Weiss,et al.  LASER PHOTOLYSIS OF RETINAL AND ITS PROTONATED AND UNPROTONATED n‐BUTYLAMINE SCHIFF BASE , 1974 .

[7]  W. Stoeckenius,et al.  Tunable laser resonance raman spectroscopy of bacteriorhodopsin. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Oseroff,et al.  Resonance Raman spectroscopy of rhodopsin in retinal disk membranes. , 1974, Biochemistry.

[9]  A. L. Verma,et al.  Structural studies of bacteriorhodopsin from Halobacterium cutirubrum by resonance Raman spectroscopy. , 1974, Canadian journal of biochemistry.

[10]  B. Honig,et al.  Letter: Properties of 14-methylretinal, 13-desmethyl-14-methylretinal, and visual pigments formed therefrom. , 1974, Journal of the American Chemical Society.

[11]  R. Becker,et al.  Visual pigments. IV. Experimental and theoretical investigations of the absorption spectra of retinal Schiff bases and retinals. , 1974, Journal of the American Chemical Society.

[12]  K. Ingham,et al.  Photoinduced double proton transfer in a model hydrogen bonded base pair. Effects of temperature and deuterium substitution , 1974 .

[13]  G. Wald Visual pigments and photoreceptors—Review and outlook , 1974 .

[14]  M. Karplus,et al.  Conformation of retinal isomers. , 1974, Biochemistry.

[15]  S. Goff,et al.  The spectral properties of some visual pigment analogs. , 1973, Experimental eye research.

[16]  A. Lewis,et al.  Tunable laser resonance Raman spectroscopy of the visual process. I: The spectrum of rhodopsin , 1973 .

[17]  E. Havinga,et al.  Conformational equilibrium and photochemistry of hexa-1,3,5-trienes , 1973 .

[18]  T. Yoshizawa,et al.  Studies on Intermediates of Visual Pigments by Absorption Spectra at Liquid Helium Temperature and Circular Dichroism at Low Temperatures , 1973 .

[19]  E. W. Abrahamson The Kinetics of Early Intermediate Processes in the Photolysis of Visual Pigments , 1973 .

[20]  P. Rentzepis,et al.  Formation and decay of prelumirhodopsin at room temperatures. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Fager,et al.  Aqueous cyanohydridoborate reduction of the rhodopsin chromophore. , 1972, Biochemical and biophysical research communications.

[22]  A. Haug,et al.  Semi-empirical Parameters in pi-Electron Systems. XII. Fluorine Substituents. , 1972 .

[23]  R. Becker,et al.  The hydrogen-bonded (protonated ) Schiff base of all-trans-retinal. , 1971, Journal of the American Chemical Society.

[24]  J. Karle,et al.  Crystal Structure of the Visual Chromophores, 11-cis and all-trans Retinal , 1971, Nature.

[25]  M. Karplus,et al.  Implications of Torsional Potential of Retinal Isomers for Visual Excitation , 1971, Nature.

[26]  D. Gill,et al.  Resonance-enhanced Raman spectra of visual pigments in intact bovine retinas at low temperatures. , 1970, Biochemical and biophysical research communications.

[27]  C. Rafferty,et al.  Relationship between Absorption Spectrum and Molecular Conformations of 11-cis-Retinal , 1969, Nature.

[28]  D. Patel 220 MHz Proton Nuclear Magnetic Resonance Spectra of Retinals , 1969, Nature.

[29]  C. M. Pathak,et al.  Infrared and Raman spectra of isobutene and isobutene-d8 , 1969 .

[30]  H. Dartnall The photosensitivities of visual pigments in the presence of hydroxylamine. , 1968, Vision research.

[31]  M. Ishigami,et al.  On the labile intermediate of rhodopsin as demonstrated by low temperature illumination. , 1961, Biochimica et biophysica acta.

[32]  P. K. Brown,et al.  Action of Light on Visual Pigments , 1959, Nature.

[33]  G. Wald,et al.  Synthesis and Bleaching of Rhodopsin , 1956, Nature.

[34]  G. Wald,et al.  CIS-TRANS ISOMERS OF VITAMIN A AND RETINENE IN THE RHODOPSIN SYSTEM , 1952, The Journal of general physiology.

[35]  N. Sheppard,et al.  The infra-red and Raman spectra of hydrocarbons. Part I. Acetylenes and olefins , 1952 .