Single-Photon Quantum Contextuality on a Chip

In classical physics, properties of objects exist independently of the context, i.e., whether and how measurements are performed. Quantum physics showed this assumption to be wrong, and that Nature is indeed “contextual”. Contextuality has been observed in the simplest physical systems, such as single particles, and plays fundamental roles in quantum computation advantage. Here, we demonstrate for the first time quantum contextuality in an integrated photonic chip. The chip implements different combinations of measurements on a single photon delocalized on four distinct spatial modes, showing violations of a Clauser–Horne–Shimony–Holt (CHSH)-like noncontextuality inequality. This paves the way to compact and portable devices for contextuality-based quantum-powered protocols.

[1]  J. Kofler,et al.  No Fine Theorem for Macrorealism: Limitations of the Leggett-Garg Inequality. , 2015, Physical review letters.

[2]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[3]  R. Spekkens Contextuality for preparations, transformations, and unsharp measurements , 2004, quant-ph/0406166.

[4]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[5]  Jeremy L O'Brien,et al.  Laser written waveguide photonic quantum circuits. , 2009, Optics express.

[6]  R. Loidl,et al.  Violation of a Bell-like inequality in single-neutron interferometry , 2003, Nature.

[7]  Fabio Sciarrino,et al.  Hybrid ququart-encoded quantum cryptography protected by Kochen-Specker contextuality , 2011, 1109.2508.

[8]  D. Ostrowsky,et al.  On the genesis and evolution of Integrated Quantum Optics , 2011, 1108.3162.

[9]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[10]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[11]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[12]  G. Chiribella,et al.  Measurement sharpness cuts nonlocality and contextuality in every physical theory , 2014, 1404.3348.

[13]  Fabio Sciarrino,et al.  Experimental Implementation of a Kochen-Specker Set of Quantum Tests , 2012, 1209.1836.

[14]  A. Cabello Experimentally testable state-independent quantum contextuality. , 2008, Physical review letters.

[15]  Xiang Zhang,et al.  Experimental Certification of Random Numbers via Quantum Contextuality , 2013, Scientific Reports.

[16]  O. Gühne,et al.  State-independent experimental test of quantum contextuality , 2009, Nature.

[17]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[18]  Jan-Åke Larsson,et al.  Necessary and Sufficient Conditions for an Extended Noncontextuality in a Broad Class of Quantum Mechanical Systems. , 2014, Physical review letters.

[19]  Robert W. Spekkens,et al.  What is the appropriate notion of noncontextuality for unsharp measurements in quantum theory , 2013 .

[20]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[21]  A. Zeilinger,et al.  Experimental non-classicality of an indivisible quantum system , 2011, Nature.

[22]  R. Raussendorf,et al.  Wigner Function Negativity and Contextuality in Quantum Computation on Rebits , 2014, 1409.5170.

[23]  Raymond Laflamme,et al.  Testing contextuality on quantum ensembles with one clean qubit. , 2009, Physical review letters.

[24]  Giuseppe Vallone,et al.  Polarization entangled state measurement on a chip , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[25]  Victor Veitch,et al.  Contextuality Supplies the Magic for Quantum Computation , 2015, 2015 IEEE International Symposium on Multiple-Valued Logic.

[26]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[27]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[28]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[29]  Marco T'ulio Quintino,et al.  All noncontextuality inequalities for the n-cycle scenario , 2012, 1206.3212.

[30]  Fabio Sciarrino,et al.  Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining , 2015, Light: Science & Applications.

[31]  R. Spekkens,et al.  Preparation contextuality powers parity-oblivious multiplexing. , 2008, Physical review letters.

[32]  D. Browne,et al.  Computational power of correlations. , 2008, Physical review letters.