Effective magnetic anisotropy of amorphous and nanocrystalline Fe71.5Al2Cu1Nb3Si13.5B9 alloy ribbon

The effective magnetic anisotropy of the Fe71.5Al2Cu1Nb3Si13.5B9 alloy with different nanostructures has been investigated. The nanostructured phase was produced by means of thermal treatment (520–600 °C during 1 h) to develop the devitrification of the precursor amorphous material. The effective magnetic anisotropy was evaluated from the measurement of the bias field dependence of the transverse susceptibility. Values of the effective anisotropy field, Hk, from 20 Oe (as-quenched sample) down to 7 Oe (optimum nanocrystalline state) were obtained. Such values of Hk are close to those obtained in the classical nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy (8–10 Oe) alloy. The Al could enhance the intergranular coupling, leading to the ultrasoft magnetic character of this nanocrystalline Al-containing alloy.

[1]  Frederic Mazaleyrat,et al.  Effective magnetic anisotropy and internal demagnetization investigations in soft magnetic nanocrystalline alloys , 2000 .

[2]  R. V. Major,et al.  Evolution of structure and magnetic properties with annealing temperature in novel Al-containing alloys based on Finemet , 1999 .

[3]  J. González,et al.  Compositional dependence of the effective magnetic anisotropy in nanocrystalline Fe–Zr–B–(Cu) alloys , 1998 .

[4]  M. Gibbs,et al.  Soft magnetic properties and structures of nanocrystalline Fe–Al–Si–B–Cu–Nb alloy ribbons , 1998 .

[5]  A. Hernando,et al.  Influence of the Crystallisation Process in the Magnetic Properties of (Fe,Co)SiB(CuNb) Alloys , 1996 .

[6]  F. Zhou,et al.  An experimental investigation on the effective magnetic anisotropy of nanocrystalline Fe89Zr7B4 soft magnetic alloys , 1996 .

[7]  N. Murillo,et al.  On the intergranular coupling in soft nanocrystalline materials , 1996 .

[8]  G. Herzer Soft magnetic nanocrystalline materials , 1995 .

[9]  X. Xiong,et al.  Annealing temperature dependence of effective magnetic anisotropy of Fe‐Cu‐Nb‐Si‐B nanocrystalline alloys , 1995 .

[10]  X. Xiong,et al.  Measurement of effective magnetic anisotropy of nanocrystalline Fe‐Cu‐Nb‐Si‐B soft magnetic alloys , 1993 .

[11]  Sang Ho Lim,et al.  Effects of Al on the magnetic properties of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys , 1993 .

[12]  A. Hernando,et al.  Modeling the influence of intergranular phases on the hysteretic behavior of hard magnetic polycrystals , 1993 .

[13]  G. Herzer,et al.  Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets , 1990, International Conference on Magnetics.

[14]  Y. Yoshizawa,et al.  Effects of magnetic field annealing on magnetic properties in ultrafine crystalline Fe-Cu-Nb-Si-B alloys , 1989, International Magnetics Conference.

[15]  G. Herzer,et al.  Grain structure and magnetism of nanocrystalline ferromagnets , 1989, International Magnetics Conference.

[16]  Y. Yoshizawa,et al.  New Fe-based soft magnetic alloys composed of ultrafine grain structure , 1988 .

[17]  G. Fish High permeability iron‐based metallic glasses for line frequency applications , 1985 .

[18]  H. Hoffmann Micromagnetism in two dimensions , 1979 .

[19]  Mely Chen Chi,et al.  Random anisotropy in amorphous ferromagnets , 1978 .

[20]  H. Hoffmann,et al.  Theory of magnetization ripple , 1968 .

[21]  W. B. Pearson,et al.  A handbook of lattice spacings and structures of metals and alloys , 1958 .

[22]  B. A. Calhoun,et al.  Ferromagnetic materials , 1955 .