A MAP Estimation Algorithm Using IIR Recursive Filters

The MAP method is a wide spread estimation technique used in many signal processing problems, e.g., image restoration, denoising and 3D reconstruction. When there is a large number of variables to estimate, the MAP method often leads to a huge set of linear or non-linear equations which must be numerically solved using time consuming algorithms.

[1]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Jae S. Lim,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[3]  José M. N. Leitão,et al.  Adaptive restoration of speckled SAR images using a compound random Markov field , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[4]  João M. Sanches,et al.  A MAP IIR filter for 3D ultrasound , 2002, Proceedings. International Conference on Image Processing.

[5]  João M. Sanches,et al.  A Fast MAP Algorithm for 3D Ultrasound , 2001, EMMCVPR.

[6]  Benjamin M. W. Tsui,et al.  Simulation evaluation of Gibbs prior distributions for use in maximum a posteriori SPECT reconstructions , 1992, IEEE Trans. Medical Imaging.

[7]  Stan Z. Li,et al.  Close-Form Solution and Parameter Selection for Convex Minimization-Based Edge-Preserving Smoothing , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Harrison H. Barrett,et al.  Evaluation of statistical methods of image reconstruction through ROC analysis [emission tomography] , 1992, IEEE Trans. Medical Imaging.

[9]  F. L. Thurstone,et al.  Acoustic Speckle: Theory and Experimental Analysis , 1979 .

[10]  T. Hebert,et al.  A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. , 1989, IEEE transactions on medical imaging.

[11]  Chin-Tu Chen,et al.  Image Restoration Using Gibbs Priors: Boundary Modeling, Treatment of Blurring, and Selection of Hyperparameter , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  C. Burckhardt Speckle in ultrasound B-mode scans , 1978, IEEE Transactions on Sonics and Ultrasonics.

[13]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[14]  Aggelos K. Katsaggelos,et al.  Digital image restoration , 2012, IEEE Signal Process. Mag..

[15]  L. J. Thomas,et al.  Noise and Edge Artifacts in Maximum-Likelihood Reconstructions for Emission Tomography , 1987, IEEE Transactions on Medical Imaging.

[16]  HuXiaoping,et al.  Image Restoration Using Gibbs Priors , 1991 .

[17]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[18]  M. Miller,et al.  An evaluation of maximum likelihood reconstruction for SPECT. , 1990, IEEE transactions on medical imaging.

[19]  P. Green Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.

[20]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.