Long-lived heavy neutral leptons at the LHC: four-fermion single-NR operators

[1]  A. Melchiorri,et al.  Unfinished fabric of the three neutrino paradigm , 2021, Physical Review D.

[2]  G. Cottin,et al.  Heavy neutral leptons in effective field theory and the high-luminosity LHC , 2021, Journal of High Energy Physics.

[3]  Z. Ren,et al.  Operator bases in effective field theories with sterile neutrinos: d ≤ 9 , 2021, Journal of High Energy Physics.

[4]  F. Maltoni,et al.  Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC , 2021, Journal of High Energy Physics.

[5]  Jacky Kumar,et al.  Anomalous dimensions from Yukawa couplings in SMNEFT: four-fermion operators , 2021, Journal of High Energy Physics.

[6]  J. Ellis,et al.  Top, Higgs, diboson and electroweak fit to the Standard Model effective field theory , 2020, Journal of High Energy Physics.

[7]  B. Mele,et al.  The see-saw portal at future Higgs Factories , 2020, Journal of High Energy Physics.

[8]  Jacky Kumar,et al.  Anomalous dimensions from gauge couplings in SMEFT with right-handed neutrinos , 2020, Journal of High Energy Physics.

[9]  H. Dreiner,et al.  Long-lived sterile neutrinos at the LHC in effective field theory , 2020, Journal of High Energy Physics.

[10]  S. A. Thayil,et al.  An Update to the Letter of Intent for MATHUSLA: Search for Long-Lived Particles at the HL-LHC , 2020, 2009.01693.

[11]  Tong Li,et al.  Constraints on the charged currents in general neutrino interactions with sterile neutrinos , 2020, Journal of High Energy Physics.

[12]  T. Schwetz,et al.  The fate of hints: updated global analysis of three-flavor neutrino oscillations , 2020, Journal of High Energy Physics.

[13]  M. Spannowsky,et al.  The effective field theory of low scale see-saw at colliders , 2020, The European Physical Journal C.

[14]  O. Mena,et al.  2020 global reassessment of the neutrino oscillation picture , 2020, Journal of High Energy Physics.

[15]  W. Y. Chan,et al.  Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in √s = 13 TeV pp collisions with the ATLAS detector , 2020, 2006.05872.

[16]  M. Chala,et al.  One-loop running of dimension-six Higgs-neutrino operators and implications of a large neutrino dipole moment , 2020, Journal of High Energy Physics.

[17]  Tong Li,et al.  General neutrino interactions with sterile neutrinos in light of coherent neutrino-nucleus scattering and meson invisible decays , 2020, Journal of High Energy Physics.

[18]  T. Han,et al.  Scalar and tensor neutrino interactions , 2020, Journal of High Energy Physics.

[19]  J. de Vries,et al.  Sterile neutrinos and neutrinoless double beta decay in effective field theory , 2020, 2002.07182.

[20]  M. Chala,et al.  One-loop matching in the SMEFT extended with a sterile neutrino , 2020, Journal of High Energy Physics.

[21]  M. Hirsch,et al.  Heavy neutral leptons at ANUBIS , 2020, Physical Review D.

[22]  Martin Bauer,et al.  ANUBIS: Proposal to search for long-lived neutral particles in CERN service shafts , 2019, 1909.13022.

[23]  J. Butterworth,et al.  Higgs phenomenology as a probe of sterile neutrinos , 2019, Physical Review D.

[24]  M. Chala,et al.  Probes of the Standard Model effective field theory extended with a right-handed neutrino , 2019, Journal of High Energy Physics.

[25]  W. Rodejohann,et al.  General neutrino interactions from an effective field theory perspective , 2019, Nuclear Physics B.

[26]  M. Drewes,et al.  Heavy neutrinos in displaced vertex searches at the LHC and HL-LHC , 2019, Journal of High Energy Physics.

[27]  Stony Brook University,et al.  Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider , 2019, Journal of Physics G: Nuclear and Particle Physics.

[28]  C. Collaboration,et al.  Search for dark matter in events with a leptoquark and missing transverse momentum in proton-proton collisions at 13 TeV , 2018, Physics Letters B.

[29]  H. Dreiner,et al.  Long-lived fermions at AL3X , 2018, Physical Review D.

[30]  C. Collaboration,et al.  Search for pair production of first-generation scalar leptoquarks at s=13  TeV , 2018, Physical Review D.

[31]  C. Ohm,et al.  Collider searches for long-lived particles beyond the Standard Model , 2018, Progress in Particle and Nuclear Physics.

[32]  V. Gligorov,et al.  Leveraging the ALICE/L3 cavern for long-lived particle searches , 2018, Physical Review D.

[33]  J. A. Dror,et al.  Long-lived particles at the energy frontier: the MATHUSLA physics case , 2018, Reports on progress in physics. Physical Society.

[34]  G. Cottin,et al.  Displaced vertices as probes of sterile neutrino mixing at the LHC , 2018, Physical Review D.

[35]  J. Helo,et al.  Heavy neutral fermions at the high-luminosity LHC , 2018, Journal of High Energy Physics.

[36]  L. F. Chaparro Sierra,et al.  Search for Heavy Neutral Leptons in Events with Three Charged Leptons in Proton-Proton Collisions at sqrt[s]=13  TeV. , 2018, Physical review letters.

[37]  G. Cottin,et al.  Searches for light sterile neutrinos with multitrack displaced vertices , 2018, 1801.02734.

[38]  H. Otono Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in √s=13 TeV pp collisions with the ATLAS detector , 2017 .

[39]  V. Gligorov,et al.  arXiv : Searching for Long-lived Particles: A Compact Detector for Exotics at LHCb , 2017, 1708.09395.

[40]  Jonathan L. Feng,et al.  ForwArd Search ExpeRiment at the LHC , 2017, 1708.09389.

[41]  I. Brivio,et al.  The standard model as an effective field theory , 2017, Physics Reports.

[42]  S. Antusch,et al.  Sterile neutrino searches via displaced vertices at LHCb , 2017, 1706.05990.

[43]  P. Hernández,et al.  The seesaw portal in testable models of neutrino masses , 2017, 1704.08721.

[44]  Y. Liao,et al.  Operators up to Dimension Seven in Standard Model Effective Field Theory Extended with Sterile Neutrinos , 2016, 1612.04527.

[45]  I. A. Monroy,et al.  Search for massive long-lived particles decaying semileptonically in the LHCb detector , 2016, The European Physical Journal. C, Particles and Fields.

[46]  J. Chou,et al.  New Detectors to Explore the Lifetime Frontier , 2016, 1606.06298.

[47]  A. S. Mete,et al.  Search for scalar leptoquarks in pp collisions at s = 13 TeV with the ATLAS experiment , 2016, 1605.06035.

[48]  O. Mattelaer,et al.  Fully-Automated Precision Predictions for Heavy Neutrino Production Mechanisms at Hadron Colliders , 2016, 1602.06957.

[49]  J. Wudka,et al.  Dimension-seven operators in the standard model with right handed neutrinos , 2015, 1505.05264.

[50]  V. M. Ghete,et al.  Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at √s = 8 TeV , 2015 .

[51]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[52]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[53]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[54]  M. Gell-Mann,et al.  Complex spinors and unified theories , 2013, 1306.4669.

[55]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[56]  Claude Duhr,et al.  UFO - The Universal FeynRules Output , 2011, Comput. Phys. Commun..

[57]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[58]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[59]  J. Wudka,et al.  Right-handed neutrino magnetic moments , 2009, Journal of Physics G: Nuclear and Particle Physics.

[60]  Claude Duhr,et al.  FeynRules - Feynman rules made easy , 2008, Comput. Phys. Commun..

[61]  J. Wudka,et al.  Heavy Majorana Neutrinos in the Effective Lagrangian Description: Application to Hadron Colliders , 2008, 0806.0876.

[62]  Tsutomu Yanagida,et al.  Horizontal gauge symmetry and masses of neutrinos , 2005 .

[63]  J. Valle,et al.  Dynamical left-right symmetry breaking. , 1995, Physical review. D, Particles and fields.

[64]  J. Valle,et al.  Left-right symmetry breaking in NJL approach , 1995, hep-ph/9507275.

[65]  S. Davidson,et al.  Model independent constraints on leptoquarks from rare processes , 1993, hep-ph/9309310.

[66]  J. Bernabéu,et al.  Lepton flavour non-conservation at high energies in a superstring inspired standard model , 1987 .

[67]  J. Valle,et al.  Neutrino mass and baryon-number nonconservation in superstring models. , 1986, Physical review. D, Particles and fields.

[68]  José W. F. Valle,et al.  Neutrino masses in SU(2) ⊗ U(1) theories , 1980 .

[69]  G. Senjanovic,et al.  Neutrino Mass and Spontaneous Parity Nonconservation , 1980 .

[70]  P. Minkowski μ→eγ at a rate of one out of 109 muon decays? , 1977 .

[71]  G. Senjanovic,et al.  Exact Left-Right Symmetry and Spontaneous Violation of Parity , 1975 .

[72]  R. Mohapatra,et al.  Left-Right Gauge Symmetry and an Isoconjugate Model of CP Violation , 1975 .

[73]  Searches for physics beyond the standard model with the MT2 variable in hadronic Þnal states with and without disappearing tracks in proton—proton collisions at s = 13 TeV , 2019 .

[74]  J. T. Childers,et al.  Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at TeV with the ATLAS detector , 2015 .

[75]  Y. Kazama Baryon- and Lepton-Nonconserving Processes , 2011 .

[76]  P. Minkowski /a ~ E~/at a Rate of One out of 10 9 Muon Decays? , 2002 .

[77]  E. Vallazza,et al.  Search for neutral heavy leptons produced in Z decays , 1997 .