Glasgow to Paris—The impact of the Glasgow commitments for the Paris climate agreement

[1]  M. Meinshausen,et al.  Realization of Paris Agreement pledges may limit warming just below 2 °C , 2022, Nature.

[2]  M. Ozkan,et al.  Current status and pillars of direct air capture technologies , 2022, iScience.

[3]  M. Tavoni,et al.  Net economic benefits of well-below 2°C scenarios and associated uncertainties , 2022, Oxford Open Climate Change.

[4]  M. Tavoni,et al.  Internalising health-economic impacts of air pollution into climate policy: a global modelling study , 2022, The Lancet Planetary Health.

[5]  Douglas Alem,et al.  Revisiting Gini for equitable humanitarian logistics , 2021, Socio-Economic Planning Sciences.

[6]  M. Obersteiner,et al.  The meaning of net zero and how to get it right , 2021, Nature Climate Change.

[7]  S. Padoan,et al.  Net zero-emission pathways reduce the physical and economic risks of climate change , 2021, Nature Climate Change.

[8]  G. Luderer,et al.  Cost and attainability of meeting stringent climate targets without overshoot , 2021, Nature Climate Change.

[9]  K. Riahi,et al.  Global roll-out of comprehensive policy measures may aid in bridging emissions gap , 2021, Nature Communications.

[10]  Understanding countries’ net-zero emissions targets , 2021, OECD/IEA Climate Change Expert Group Papers.

[11]  J. Rogelj,et al.  Wave of net zero emission targets opens window to meeting the Paris Agreement , 2021, Nature Climate Change.

[12]  M. Tavoni,et al.  Persistent inequality in economically optimal climate policies , 2021, Nature Communications.

[13]  M. Tavoni,et al.  Future Prospects of Direct Air Capture Technologies: Insights From an Expert Elicitation Survey , 2021, Frontiers in Climate.

[14]  Dan J Stein,et al.  Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019 , 2020, Lancet.

[15]  Keywan Riahi,et al.  Taking stock of national climate policies to evaluate implementation of the Paris Agreement , 2020, Nature Communications.

[16]  Christophe McGlade,et al.  Nationally Determined Contributions under the Paris Agreement and the costs of delayed action , 2019, Climate Policy.

[17]  R. Van Dingenen,et al.  TM5-FASST: a global atmospheric source–receptor model for rapid impact analysis of emission changes on air quality and short-lived climate pollutants , 2018, Atmospheric Chemistry and Physics.

[18]  Laurent Drouet,et al.  Future Global Air Quality Indices under Different Socioeconomic and Climate Assumptions , 2018, Sustainability.

[19]  K. Calvin,et al.  Future air pollution in the Shared Socio-economic Pathways , 2017 .

[20]  Joeri Rogelj,et al.  Equitable mitigation to achieve the Paris Agreement goals , 2017 .

[21]  K. Keramidas,et al.  A global stocktake of the Paris pledges: Implications for energy systems and economy , 2016 .

[22]  James A. Edmonds,et al.  Economic tools to promote transparency and comparability in the Paris Agreement , 2016 .

[23]  Valentina Bosetti,et al.  The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways , 2016 .

[24]  G. Luderer,et al.  Energy system transformations for limiting end-of-century warming to below 1.5 °C , 2015 .

[25]  K. Calvin,et al.  Post-2020 climate agreements in the major economies assessed in the light of global models , 2015 .

[26]  Charlie Wilson,et al.  Diagnostic indicators for integrated assessment models of climate policy , 2015 .

[27]  K. Calvin,et al.  LIMITS Special Issue on Durban Platform scenarios Energy investments under climate policy: a comparison of global models , 2013 .

[28]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .