Optical disassembly of cellular clusters by tunable ‘tug-of-war’ tweezers

Bacterial biofilms underlie many persistent infections, posing major hurdles in antibiotic treatment. Here we design and demonstrate ‘tug-of-war’ optical tweezers that can facilitate the assessment of cell–cell adhesion—a key contributing factor to biofilm development, thanks to the combined actions of optical scattering and gradient forces. With a customized optical landscape distinct from that of conventional tweezers, not only can such ‘tug-of-war’ tweezers stably trap and stretch a rod-shaped bacterium in the observing plane, but, more importantly, they can also impose a tunable lateral force that pulls apart cellular clusters without any tethering or mechanical movement. As a proof of principle, we examined a Sinorhizobium meliloti strain that forms robust biofilms and found that the strength of intercellular adhesion depends on the growth medium. This technique may herald new photonic tools for optical manipulation and biofilm study, as well as other biological applications.

[1]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[2]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[3]  M. Woerdemann,et al.  Full 3D translational and rotational optical control of multiple rod‐shaped bacteria , 2010, Journal of biophotonics.

[4]  Oto Brzobohatý,et al.  Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap. , 2015, Optics express.

[5]  Robert E W Hancock,et al.  Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. , 2013, Current opinion in microbiology.

[6]  J. Käs,et al.  The optical stretcher: a novel laser tool to micromanipulate cells. , 2001, Biophysical journal.

[7]  Joshua W. Shaevitz,et al.  Backtracking by single RNA polymerase molecules observed at near-base-pair resolution , 2003, Nature.

[8]  Staffan Schedin,et al.  Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion. , 2004, Biosensors & bioelectronics.

[9]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[10]  D. Christodoulides,et al.  Trapping and rotating microparticles and bacteria with moiré-based optical propelling beams , 2012, Biomedical optics express.

[11]  O. Axner,et al.  Design for fully steerable dual-trap optical tweezers. , 1997, Applied optics.

[12]  Tomáš Čižmár,et al.  Optical conveyor belt for delivery of submicron objects , 2005 .

[13]  Ronald W. Davis,et al.  The Composite Genome of the Legume Symbiont Sinorhizobium meliloti , 2001, Science.

[14]  Simon Hanna,et al.  Shape-induced force fields in optical trapping , 2014, Nature Photonics.

[15]  D. Allison,et al.  The Biofilm Matrix , 2003, Biofouling.

[16]  Simon Hanna,et al.  Holographic optical trapping of microrods and nanowires. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Peter J. Pauzauskie,et al.  Optical trapping and integration of semiconductor nanowire assemblies in water , 2006, Nature materials.

[18]  Tuba Altindal,et al.  Bacterial Chemotaxis in an Optical Trap , 2011, PloS one.

[19]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  Peter Török,et al.  Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation , 1995 .

[21]  Steven M. Block,et al.  Compliance of bacterial flagella measured with optical tweezers , 1989, Nature.

[22]  Jay X. Tang,et al.  Adhesion of single bacterial cells in the micronewton range. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[24]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[25]  Jeong-Hyeon Choi,et al.  Genetic analysis of Agrobacterium tumefaciens unipolar polysaccharide production reveals complex integrated control of the motile‐to‐sessile switch , 2013, Molecular microbiology.

[26]  D. Davies,et al.  Understanding biofilm resistance to antibacterial agents , 2003, Nature Reviews Drug Discovery.

[27]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[28]  Giancarlo Ruocco,et al.  Computer generation of optimal holograms for optical trap arrays. , 2007, Optics express.

[29]  G. Wong,et al.  The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa , 2011, PLoS pathogens.

[30]  Kishan Dholakia,et al.  Optical micromanipulation. , 2008, Chemical Society reviews.

[31]  S. Campoy,et al.  A Simple Technique Based on a Single Optical Trap for the Determination of Bacterial Swimming Pattern , 2013, PloS one.

[32]  L. Oddershede,et al.  Optical Trapping of Nanoparticles and Quantum Dots , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[34]  J. Herrou,et al.  A Cell Cycle and Nutritional Checkpoint Controlling Bacterial Surface Adhesion , 2014, PLoS genetics.

[35]  Jessie Y.C. Chen,et al.  The conserved polarity factor PodJ1 impacts multiple cell envelope‐associated functions in Sinorhizobium meliloti , 2012, Molecular microbiology.

[36]  Pavel Zemánek,et al.  Colloquium: Gripped by light: Optical binding , 2010 .

[37]  Norman R. Heckenberg,et al.  Optical tweezers computational toolbox , 2007 .

[38]  Demetrios N. Christodoulides,et al.  Curved singular beams for three-dimensional particle manipulation , 2015, Scientific Reports.

[39]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[40]  Controlled alignment of bacterial cells with oscillating optical tweezers , 2011 .

[41]  Matteo Brilli,et al.  The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis , 2010, BMC Systems Biology.

[42]  Ian T. Paulsen,et al.  Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities , 2015, Molecules.

[43]  Christopher V. Rao,et al.  High-resolution, long-term characterization of bacterial motility using optical tweezers , 2009, Nature Methods.

[44]  David G Grier,et al.  Volumetric imaging of holographic optical traps. , 2006, Optics express.

[45]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[46]  M. Kinnunen,et al.  Probing the Red Blood Cells Aggregating Force With Optical Tweezers , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  Anna Linnenberger,et al.  Increasing Trap Stiffness with Position Clamping in Holographic Optical Tweezers , 2022 .

[48]  Kathryn M. Jones,et al.  How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model , 2007, Nature Reviews Microbiology.

[49]  R. Kolter,et al.  Biofilm formation as microbial development. , 2000, Annual review of microbiology.

[50]  Bo Sun,et al.  Theory of holographic optical trapping. , 2008, Optics express.

[51]  Mincheng Zhong,et al.  Trapping red blood cells in living animals using optical tweezers , 2013, Nature Communications.

[52]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[53]  Laura V. Cowan,et al.  Optically Trapped Bacteria Pairs Reveal Discrete Motile Response to Control Aggregation upon Cell–Cell Approach , 2014, Current Microbiology.

[54]  Min Gu,et al.  A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes. , 2007, Optics express.