Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect

Wave energy is one of the most promising alternatives to fossil fuels due to the enormous available resource; however, its development may be slowed as it is often regarded as uneconomical. The largest cost reductions are expected to be obtained through economies of scale and technological progress. In this sense, the incorporation of wave energy systems into offshore wind energy farms is an opportunity to foster the development of wave energy. The synergies between both renewables can be realised through these co-located energy farms and, thus, some challenges of offshore wind energy can be met. Among them, this paper focuses on the longer non-operational periods of offshore wind turbines—relative to their onshore counterparts—typically caused by delays in maintenance due to the harsh marine conditions. Co-located wave energy converters would act as a barrier extracting energy from the waves and resulting in a shielding effect over the wind farm. On this basis, the aim of this paper is to analyse wave energy economics in a holistic way, as well as the synergies between wave and offshore wind energy, focusing on the shadow effect and the associated increase in the accessibility to the wind turbines.

[1]  G. Iglesias,et al.  Potentials of a hybrid offshore farm for the island of Fuerteventura , 2014 .

[2]  H. Storch,et al.  Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models , 2006 .

[3]  Michael Muskulus,et al.  Maintenance Strategies for Large Offshore Wind Farms , 2012 .

[4]  AbuBakr S. Bahaj,et al.  An assessment of growth scenarios and implications for ocean energy industries in Europe , 2007 .

[5]  Tom Moerenhout,et al.  Subsidies and External Costs in Electric Power Generation: A comparative review of estimates , 2011 .

[6]  Mariano Buccino,et al.  Wave Loadings Acting on an Innovative Breakwater for Energy Production , 2011 .

[7]  Gregorio Iglesias,et al.  Co-located wave-wind farms: Economic assessment as a function of layout , 2015 .

[8]  Thomas Prässler,et al.  Comparison of the Financial Attractiveness Among Prospective Offshore Wind Parks in Selected European Countries , 2012 .

[9]  Raymond Alcorn,et al.  A 10 year installation program for wave energy in Ireland: A case study sensitivity analysis on financial returns , 2012 .

[10]  Jens Peter Kofoed,et al.  Optimal siting of offshore wind-power combined with wave energy through a marine spatial planning approach , 2013 .

[11]  Nand Kishor,et al.  Off-shore wind farm development: Present status and challenges , 2014 .

[12]  J. M. Paixão Conde,et al.  Numerical study of the air-flow in an oscillating water column wave energy converter , 2008 .

[13]  Aurélien Babarit,et al.  Numerical benchmarking study of a selection of wave energy converters , 2012 .

[14]  Norvald Kjerstad,et al.  Simulation of irregular waves in an offshore wind farm with a spectral wave model , 2011 .

[15]  Zhang Bei-wen,et al.  Horns Rev offshore wind farm , 2006 .

[16]  Maurizio Collu,et al.  Use of a wave energy converter as a motion suppression device for floating wind turbines , 2013 .

[17]  Dean L. Millar,et al.  Modelling analysis of the sensitivity of shoreline change to a wave farm , 2007 .

[18]  Armando Carravetta,et al.  Non Breaking Wave Forces at the Front Face of Seawave Slotcone Generators , 2012 .

[19]  António F.O. Falcão,et al.  Modelling and control of oscillating-body wave energy converters with hydraulic power take-off and gas accumulator , 2007 .

[20]  Henrik Lund,et al.  Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply , 2006 .

[21]  Vallam Sundar,et al.  Ocean Wave Energy , 2015 .

[22]  Tim Stallard,et al.  Concurrent and legacy economic and environmental impacts from establishing a marine energy sector in Scotland , 2008 .

[23]  Amin Al-Habaibeh,et al.  An innovative approach for energy generation from waves , 2010 .

[24]  F. Castro Ruiz,et al.  Numerical modelling in wave energy conversion systems , 2008 .

[25]  Gregorio Iglesias,et al.  Wind Power Viability on a Small Island , 2014 .

[26]  J. Kofoed,et al.  Measurements of overtopping flow time series on the Wave Dragon, wave energy converter , 2009 .

[27]  Enzo Sauma,et al.  Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block , 2013 .

[28]  Anne Merrild Hansen,et al.  A Method for EIA Scoping of Wave Energy Converters: Based on Classification of the used Technology , 2012 .

[29]  Colin T. Anderson,et al.  PELAMIS WEC – MAIN BODY STRUCTURAL DESIGN AND MATERIALS SELECTION , 2022 .

[30]  F. J. M. Farley Capture width for arrays of wave energy converters , 2013 .

[31]  G. Iglesias,et al.  The economics of wave energy: A review , 2015 .

[32]  Taizo Hayashi,et al.  HYDRAULIC RESEARCH ON THE CLOSELY SPACED PILE BREAKWATER , 1966 .

[33]  Barbara J. Lence,et al.  An integrated model for estimating energy cost of a tidal current turbine farm , 2011 .

[34]  Mark Gaterell,et al.  The impact of energy externalities on the cost effectiveness of energy efficiency measures applied to dwellings , 2005 .

[35]  Christos Makridis,et al.  Offshore wind power resource availability and prospects: A global approach , 2013 .

[36]  Gregorio Iglesias,et al.  Improving wind farm accessibility for operation & maintenance through a co-located wave farm: Influence of layout and wave climate , 2015 .

[37]  Gregorio Iglesias,et al.  The WaveCat© - Development of A New Wave Energy Converter , 2011 .

[38]  Fergal O. Rourke,et al.  School of Mechanical and Design Engineering 2010-0401 Marine Current Energy Devices : Current Status and Possible Future Applications in Ireland , 2017 .

[39]  Gregorio Iglesias,et al.  A review of combined wave and offshore wind energy , 2015 .

[40]  Torgeir Moan,et al.  Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter , 2013 .

[41]  Manabu Takao,et al.  Current status of self rectifying air turbines for wave energy conversion , 2006 .

[42]  R. Paasch,et al.  Characterizing the wave energy resource of the US Pacific Northwest , 2010 .

[43]  T. Lewis,et al.  Operational expenditure costs for wave energy projects and impacts on financial returns , 2013 .

[44]  Martín Castaño Sánchez,et al.  Sistema de monitorización y supervisión de una boya para generación de energía undimotriz , 2011 .

[45]  G. Iglesias,et al.  Wave energy resource in the Estaca de Bares area (Spain) , 2010 .

[46]  W.A.A.M. Bierbooms,et al.  The DOWEC Offshore Reference Windfarm: Analysis of Transportation for Operation and Maintenance , 2003 .

[47]  J. F. Chozas,et al.  Synergies for a Wave-Wind Energy Concept , 2013 .

[48]  Julia Fernandez Chozas,et al.  Economic Benefit of Combining Wave and Wind Power Productions in Day-Ahead Electricity Markets , 2012 .

[49]  Gregorio Iglesias,et al.  Wave power for La Isla Bonita , 2010 .

[50]  Gregorio Iglesias,et al.  Wave farm impact based on realistic wave-WEC interaction , 2013 .

[51]  Gregorio Iglesias,et al.  CO-LOCATED WAVE AND OFFSHORE WIND FARMS: A PRELIMINARY CASE STUDY OF AN HYBRID ARRAY , 2014 .

[52]  A. Sarmento,et al.  The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices , 2010 .

[53]  Tom Andersen,et al.  Innovative rubble mound breakwaters for overtopping wave energy conversion , 2014 .

[54]  Gregorio Iglesias,et al.  Co-located wind-wave farm synergies (Operation & Maintenance): A case study , 2015 .

[55]  Gregorio Iglesias,et al.  Efficiency of OWC wave energy converters: A virtual laboratory , 2014 .

[56]  Gregorio Iglesias,et al.  Towards the optimal design of a co-located wind-wave farm , 2015 .

[57]  Wim Turkenburg,et al.  Cost Reduction Prospects for Offshore Wind Farms , 2004 .

[58]  Pasquale Contestabile,et al.  Wave loadings acting on Overtopping Breakwater for Energy Conversion , 2013 .

[59]  Stuart I. Rogers,et al.  The environmental interactions of tidal and wave energy generation devices , 2012 .

[60]  Julia Fernandez Chozas,et al.  Predictability and Variability of Wave and Wind: wave and wind forecasting and diversified energy systems in the Danish North Sea , 2013 .

[61]  G. Iglesias,et al.  Wave farm impact on the beach profile: A case study , 2014 .

[62]  Gregorio Iglesias,et al.  Wave resource in El Hierro—an island towards energy self-sufficiency , 2011 .

[63]  Gregorio Iglesias,et al.  Performance assessment of Tidal Stream Turbines: A parametric approach , 2013 .

[64]  Gregorio Iglesias,et al.  Wave and offshore wind energy on an island , 2014 .

[65]  Peter McGregor,et al.  Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates , 2011 .

[66]  Mark Z. Jacobson,et al.  Power output variations of co-located offshore wind turbines and wave energy converters in California , 2010 .

[67]  Gregorio Iglesias,et al.  Wave farm impact: The role of farm-to-coast distance , 2014 .

[68]  Francois Besnard On maintenance optimization for offshore wind farms , 2013 .

[69]  Margaret Osikhofe Kadiri,et al.  A review of the potential water quality impacts of tidal renewable energy systems , 2012 .

[70]  Future Marine Energy Results of the Marine Energy Challenge : Cost competitiveness and growth of wave and tidal stream energy , 2022 .

[71]  S. Neill,et al.  The impact of tidal stream turbines on large-scale sediment dynamics , 2009 .

[72]  C. Mei,et al.  Bragg scattering and wave-power extraction by an array of small buoys , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[73]  Daniel Micallef,et al.  Investigating the aerodynamic performance of a model offshore floating wind turbine , 2014 .

[74]  S. Astariz,et al.  Wave energy vs. other energy sources: A reassessment of the economics , 2016 .

[75]  Winfried Hoffmann,et al.  PV solar electricity industry: Market growth and perspective , 2006 .

[76]  James R. Jordan,et al.  Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks , 2012 .

[77]  David McMillan,et al.  Sensitivity of offshore wind turbine operation & maintenance costs to key operational parameters , 2012 .

[78]  Gregorio Iglesias,et al.  The new wave energy converter WaveCat: Concept and laboratory tests , 2012 .

[79]  Gregorio Iglesias,et al.  A wave farm for an island: Detailed effects on the nearshore wave climate , 2014 .

[80]  Paulo Alexandre Justino,et al.  OWC wave energy devices with air flow control , 1999 .

[81]  Francesco Fusco,et al.  Variability reduction through optimal combination of wind/wave resources – An Irish case study , 2010 .

[82]  M. B. Zaayer,et al.  Reliability, availability and maintenance aspects of large-scale offshore wind farms, a concepts study , 2001 .

[83]  António F.O. Falcão,et al.  Wave energy utilization: A review of the technologies , 2010 .

[84]  Gregorio Iglesias,et al.  Wave and offshore wind potential for the island of Tenerife , 2013 .

[85]  Alexander Galetovic,et al.  Wind, coal, and the cost of environmental externalities , 2013 .

[86]  Wim Turkenburg,et al.  Global experience curves for wind farms , 2005 .

[87]  L.W.M.M. Rademakers,et al.  TOOLS FOR ESTIMATING OPERATION AND MAINTENANCE COSTS OF OFFSHORE WIND FARMS: State of the Art , 2008 .

[88]  Bernardino Couñago Lorenzo,et al.  Estudio técnico-financiero sobre la construcción de un parque eólico marino flotante en el litoral español , 2010 .

[89]  Gregorio Iglesias,et al.  Offshore and inshore wave energy assessment: Asturias (N Spain) , 2010 .

[90]  Dean L. Millar,et al.  Further analysis of change in nearshore wave climate due to an offshore wave farm: An enhanced case study for the Wave Hub site , 2012 .

[91]  J. P. Deane,et al.  Modelling the economic impacts of 500 MW of wave power in Ireland , 2012 .

[92]  Robert Alexander Beharie,et al.  Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment , 2011 .

[93]  Gregorio Iglesias,et al.  A methodology to determine the power performance of wave energy converters at a particular coastal location , 2012 .