POPULATION GENETIC STRUCTURE AND SECONDARY SYMBIONTS IN HOST‐ASSOCIATED POPULATIONS OF THE PEA APHID COMPLEX

Polyphagous insect herbivores experience different selection pressures on their various host plant species. How this affects population divergence and speciation may be influenced by the bacterial endosymbionts that many harbor. Here, we study the population structure and symbiont community of the pea aphid (Acyrthosiphon pisum), which feeds on a range of legume species and is known to form genetically differentiated host‐adapted populations. Aphids were collected from eight legume genera in England and Germany. Extensive host plant associated differentiation was observed with this collection of pea aphids comprising nine genetic clusters, each of which could be associated with a specific food plant. Compared to host plant, geography contributed little to genetic differentiation. The genetic clusters were differentiated to varying degrees, but this did not correlate with their degree of divergence in host use. We surveyed the pea aphid clones for the presence of six facultative (secondary) bacterial endosymbionts and found they were nonrandomly distributed across the aphid genetic clusters and this distribution was similar in the two countries. Aphid clones on average carried 1.4 species of secondary symbiont with those associated with Lathyrus having significantly fewer. The results are interpreted in the light of the evolution of specialization and ecological speciation.

[1]  N. Patrik What is ecological speciation , 2012 .

[2]  H. Godfray,et al.  Effects of bacterial secondary symbionts on host plant use in pea aphids , 2011, Proceedings of the Royal Society B: Biological Sciences.

[3]  T. Maoka,et al.  Symbiotic Bacterium Modifies Aphid Body Color , 2010, Science.

[4]  G. K. Davis,et al.  Genome Sequence of the Pea Aphid Acyrthosiphon pisum , 2010, PLoS biology.

[5]  D. Michaud,et al.  Impact of environmental stress on aphid clonal resistance to parasitoids: Role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. , 2009, Journal of insect physiology.

[6]  N. Moran,et al.  Post-Pleistocene radiation of the pea aphid complex revealed by rapidly evolving endosymbionts , 2009, Proceedings of the National Academy of Sciences.

[7]  N. Moran,et al.  Bacteriophages Encode Factors Required for Protection in a Symbiotic Mutualism , 2009, Science.

[8]  V. Calcagno,et al.  Complex trait differentiation between host-populations of the pea aphid Acyrthosiphon pisum (Harris): implications for the evolution of ecological specialisation , 2009 .

[9]  S. Via Natural selection in action during speciation , 2009, Proceedings of the National Academy of Sciences.

[10]  S. Hodges,et al.  Adaptive radiations: From field to genomic studies , 2009, Proceedings of the National Academy of Sciences.

[11]  Dolph Schluter,et al.  Genetics and ecological speciation , 2009, Proceedings of the National Academy of Sciences.

[12]  C. Sandrock,et al.  Genotypic Variation and the Role of Defensive Endosymbionts in an All-Parthenogenetic Host-Parasitoid Interaction , 2009, Evolution; international journal of organic evolution.

[13]  J. Feder,et al.  Latitudinal Variation in Parasitoid Guild Composition and Parasitism Rates of North American Hawthorn Infesting Rhagoletis , 2009, Environmental entomology.

[14]  J. Peccoud,et al.  A continuum of genetic divergence from sympatric host races to species in the pea aphid complex , 2009, Proceedings of the National Academy of Sciences.

[15]  P. Nosil,et al.  Ecological explanations for (incomplete) speciation. , 2009, Trends in ecology & evolution.

[16]  D. Schluter,et al.  Evidence for Ecological Speciation and Its Alternative , 2022 .

[17]  J. Pritchard,et al.  Documentation for structure software : Version 2 . 3 , 2009 .

[18]  A. E. Douglas,et al.  Symbiotic bacteria enable insect to use a nutritionally inadequate diet , 2009, Proceedings of the Royal Society B: Biological Sciences.

[19]  J. Peccoud,et al.  Host range expansion of an introduced insect pest through multiple colonizations of specialized clones , 2008, Molecular ecology.

[20]  H. Godfray,et al.  Population Differentiation and Genetic Variation in Performance on Eight Hosts in the Pea Aphid Complex , 2008, Evolution; international journal of organic evolution.

[21]  S. Via,et al.  The genetic mosaic suggests a new role for hitchhiking in ecological speciation , 2008, Molecular ecology.

[22]  R. Butlin,et al.  Sympatric, parapatric or allopatric: the most important way to classify speciation? , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[23]  A. Moya,et al.  Evolution of the Secondary Symbiont “Candidatus Serratia symbiotica” in Aphid Species of the Subfamily Lachninae , 2008, Applied and Environmental Microbiology.

[24]  D. Schwarz,et al.  Radiation and divergence in the Rhagoletis Pomonella species complex: inferences from DNA sequence data , 2008, Journal of evolutionary biology.

[25]  Cristina P. Sandoval,et al.  Ecological Niche Dimensionality and the Evolutionary Diversification of Stick Insects , 2008, PloS one.

[26]  M. Whitlock Evolutionary inference from QST , 2008, Molecular ecology.

[27]  R. O’Hara,et al.  Comparative studies of quantitative trait and neutral marker divergence: a meta‐analysis , 2008, Journal of evolutionary biology.

[28]  Daniel I. Bolnick,et al.  Sympatric Speciation: Models and Empirical Evidence , 2007 .

[29]  M. Shimada,et al.  Obligate symbiont involved in pest status of host insect , 2007, Proceedings of the Royal Society B: Biological Sciences.

[30]  H. Godfray,et al.  Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids , 2007, Oecologia.

[31]  Laurent Excoffier,et al.  Arlequin (version 3.0): An integrated software package for population genetics data analysis , 2005, Evolutionary bioinformatics online.

[32]  N. Moran,et al.  Sexual acquisition of beneficial symbionts in aphids , 2006, Proceedings of the National Academy of Sciences.

[33]  H. Godfray,et al.  POPULATION DIFFERENTIATION AND GENETIC VARIATION IN HOST CHOICE AMONG PEA APHIDS FROM EIGHT HOST PLANT GENERA , 2006, Evolution; international journal of organic evolution.

[34]  B. Crespi,et al.  Experimental evidence that predation promotes divergence in adaptive radiation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  N. Moran,et al.  Costs and benefits of a superinfection of facultative symbionts in aphids , 2006, Proceedings of the Royal Society B: Biological Sciences.

[36]  E. Mondor,et al.  Symbiont modifies host life-history traits that affect gene flow , 2006, Proceedings of the Royal Society B: Biological Sciences.

[37]  H. Godfray,et al.  Aphid Protected from Pathogen by Endosymbiont , 2005, Science.

[38]  N. Moran,et al.  Horizontal Transfer of Bacterial Symbionts: Heritability and Fitness Effects in a Novel Aphid Host , 2005, Applied and Environmental Microbiology.

[39]  R. O’Hara,et al.  Bias and Precision in QST Estimates: Problems and Some Solutions , 2005, Genetics.

[40]  N. Moran,et al.  Variation in resistance to parasitism in aphids is due to symbionts not host genotype. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[42]  N. Moran,et al.  Evolutionary Relationships of Three New Species of Enterobacteriaceae Living as Symbionts of Aphids and Other Insects , 2005, Applied and Environmental Microbiology.

[43]  M. Stephens,et al.  Accounting for Decay of Linkage Disequilibrium in Haplotype Inference and Missing-data Imputation , 2022 .

[44]  H. Rundle,et al.  Ecological speciation: Ecological speciation , 2005 .

[45]  J. Cornuet,et al.  GENECLASS2: a software for genetic assignment and first-generation migrant detection. , 2004, The Journal of heredity.

[46]  Teresa E. Leonardo Removal of a specialization‐associated symbiont does not affect aphid fitness , 2004 .

[47]  T. Fukatsu,et al.  Host Plant Specialization Governed by Facultative Symbiont , 2004, Science.

[48]  A. Estoup,et al.  Cross-species amplification of microsatellite loci in aphids: assessment and application , 2004 .

[49]  H. Godfray,et al.  Linking the bacterial community in pea aphids with host‐plant use and natural enemy resistance , 2004 .

[50]  D. J. Funk,et al.  Herbivorous Insects: Model Systems for the Comparative Study of Speciation Ecology , 2004, Genetica.

[51]  Teresa E. Leonardo,et al.  Facultative symbionts are associated with host plant specialization in pea aphid populations , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[52]  B. Sabater-Muñoz,et al.  Host–based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[53]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[54]  N. Moran,et al.  Side‐stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea , 2003, Molecular ecology.

[55]  N. Moran,et al.  Facultative bacterial symbionts in aphids confer resistance to parasitic wasps , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  H. Shibao,et al.  Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum , 2002, Molecular ecology.

[57]  J. McKay,et al.  Adaptive population divergence: markers, QTL and traits , 2002 .

[58]  J. Mallet,et al.  Host races in plant-feeding insects and their importance in sympatric speciation. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  A. Maxmen,et al.  Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress , 2002 .

[60]  David J. Hawthorne,et al.  Genetic linkage of ecological specialization and reproductive isolation in pea aphids , 2001, Nature.

[61]  S. Via,et al.  Sympatric speciation in animals: the ugly duckling grows up. , 2001, Trends in ecology & evolution.

[62]  P. Donnelly,et al.  A new statistical method for haplotype reconstruction from population data. , 2001, American journal of human genetics.

[63]  T. Fukatsu,et al.  Spiroplasma Symbiont of the Pea Aphid, Acyrthosiphon pisum (Insecta: Homoptera) , 2001, Applied and Environmental Microbiology.

[64]  L. Baudouin,et al.  An operational Bayesian approach for the identification of sexually reproduced cross-fertilized populations using molecular markers , 2001 .

[65]  Joshua P. White,et al.  Independent origins and horizontal transfer of bacterial symbionts of aphids , 2001, Molecular ecology.

[66]  K. Crandall,et al.  TCS: a computer program to estimate gene genealogies , 2000, Molecular ecology.

[67]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[68]  N. Moran,et al.  COSPECIATION BETWEEN BACTERIAL ENDOSYMBIONTS (BUCHNERA) AND A RECENT RADIATION OF APHIDS (UROLEUCON) AND PITFALLS OF TESTING FOR PHYLOGENETIC CONGRUENCE , 2000, Evolution; international journal of organic evolution.

[69]  S. Via REPRODUCTIVE ISOLATION BETWEEN SYMPATRIC RACES OF PEA APHIDS. I. GENE FLOW RESTRICTION AND HABITAT CHOICE , 1999, Evolution; international journal of organic evolution.

[70]  N. Moran,et al.  Phylogenetics and evolution of the aphid genus Uroleucon based on mitochondrial and nuclear DNA sequences , 1999 .

[71]  A. Purcell,et al.  Occurrence and Transmission of Facultative Endosymbionts in Aphids , 1997, Current Microbiology.

[72]  M. Beaumont,et al.  Evaluating loci for use in the genetic analysis of population structure , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[73]  B. Campbell,et al.  A New Rickettsia from a Herbivorous Insect, the Pea Aphid Acyrthosiphon pisum (Harris) , 1996, Current Microbiology.

[74]  J. Feder The Effects of Parasitoids on Sympatric Host Races of Rhagoletis Pomonella (Diptera: Tephritidae) , 1995 .

[75]  J. Sandström,et al.  Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance , 1994 .

[76]  K. Spitze Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. , 1993, Genetics.

[77]  R. Julkunen‐Tiitto,et al.  HOST PREFERENCE AND ALLOZYME DIFFERENTIATION IN SHOOT GALLING SAWFLY, EUURA ATRA , 1993, Evolution; international journal of organic evolution.

[78]  Scott P Carroll,et al.  HOST RACE RADIATION IN THE SOAPBERRY BUG: NATURAL HISTORY WITH THE HISTORY , 1992, Evolution; international journal of organic evolution.

[79]  S. Via THE GENETIC STRUCTURE OF HOST PLANT ADAPTATION IN A SPATIAL PATCHWORK: DEMOGRAPHIC VARIABILITY AMONG RECIPROCALLY TRANSPLANTED PEA APHID CLONES , 1991, Evolution; international journal of organic evolution.

[80]  R. Denno,et al.  Role of Enemy‐Free Space and Plant Quality in Host‐Plant Selection by Willow Beetles , 1990 .

[81]  E. Bernays,et al.  On the Evolution of Host Specificity in Phytophagous Arthropods , 1988 .

[82]  D. Futuyma,et al.  GENETIC VARIATION AND COVARIATION IN RESPONSES TO HOST PLANTS BY ALSOPHILA POMETARIA (LEPIDOPTERA: GEOMETRIDAE) , 1987, Evolution; international journal of organic evolution.

[83]  Bruce A. McPheron,et al.  Interactions Among Three Trophic Levels: Influence of Plants on Interactions Between Insect Herbivores and Natural Enemies , 1980 .