Investigation of long-term thermal aging-induced damage in oxide/oxide ceramic matrix composites

[1]  Hui Liu,et al.  Effects of thermal aging on the cyclic thermal shock behavior of oxide/oxide ceramic matrix composites , 2020, Materials Science and Engineering: A.

[2]  J. Lamon Review: creep of fibre-reinforced ceramic matrix composites , 2019, International Materials Reviews.

[3]  Huang Yuan,et al.  Micro-porosity as damage indicator for characterizing cyclic thermal shock-induced anisotropic damage in oxide/oxide ceramic matrix composites , 2019, Engineering Fracture Mechanics.

[4]  Huang Yuan,et al.  Representation of micro-structural evolution and thermo-mechanical damage in thermal shocked oxide/oxide ceramic matrix composites , 2019, International Journal of Fatigue.

[5]  Huang Yuan,et al.  Evolution and characterization of cyclic thermal shock-induced thermomechanical damage in oxide/oxide ceramics matrix composites , 2019, International Journal of Fatigue.

[6]  M. Saadatfar,et al.  Synthesis and thermal shock evaluation of porous SiC ceramic foams for solar thermal applications , 2018, Journal of the American Ceramic Society.

[7]  N. Jacobson,et al.  Degradation of Nextel™ 610‐based oxide‐oxide ceramic composites by aluminum oxychloride decomposition products , 2018 .

[8]  K. Rezwan,et al.  Thermal exposure effects on the long‐term behavior of a mullite fiber at high temperature , 2017 .

[9]  É. Martin,et al.  Microstructure and mechanical behaviour of a Nextel™610/alumina weak matrix composite subjected to tensile and compressive loadings , 2017 .

[10]  H. Richter,et al.  Tensile strength distribution of all-oxide ceramic matrix mini-composites with porous alumina matrix phase , 2016 .

[11]  K. Rezwan,et al.  Influence of the Matrix Composition and the Processing Conditions on the Grain Size Evolution of Nextel 610 Fibers in Ceramic Matrix Composites after Heat Treatment , 2015 .

[12]  R. McMeeking,et al.  Model of Oxidation-Induced Fiber Fracture in SiC/SiC Composites , 2014 .

[13]  K. Rezwan,et al.  Influence of fiber orientation and matrix processing on the tensile and creep performance of Nextel 610 reinforced polymer derived ceramic matrix composites , 2014 .

[14]  P. Mechnich,et al.  Degradation of oxide fibers by thermal overload and environmental effects , 2012 .

[15]  P. Mechnich,et al.  Improving the Microstructural Stability of Nextel™ 610 Alumina Fibers Embedded in a Porous Alumina Matrix , 2010 .

[16]  P. Ladevèze,et al.  Mechanical behaviour and lifetime modelling of self-healing ceramic-matrix composites subjected to thermomechanical loading in air , 2009 .

[17]  M. Ruggles‐Wrenn,et al.  Effect of loading rate on the monotonic tensile behavior and tensile strength of an oxide–oxide ceramic composite at 1200 °C , 2008 .

[18]  D. E. Vlachos,et al.  Anisotropic damage of alumina/alumina CFCCs under long term high temperature exposure : Investigations by ultrasonic stiffness measurements and quasi-static tests , 2006 .

[19]  Reinhard A. Simon Progress in Processing and Performance of Porous‐Matrix Oxide/Oxide Composites , 2005 .

[20]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[21]  J. Yang,et al.  Effects of Thermal Aging on the Mechanical Properties of a Porous‐Matrix Ceramic Composite , 2004 .

[22]  P. Cantonwine Strength of thermally exposed alumina fibers Part II bundle behavior , 2003 .

[23]  D. Wilson,et al.  High performance oxide fibers for metal and ceramic composites , 2001 .

[24]  A. Mortensen,et al.  Nextel™ 610 alumina fibre reinforced aluminium: influence of matrix and process on flow stress , 2001 .

[25]  K. Chawla,et al.  Effect of high temperature exposure on the tensile strength of alumina fiber Nextel 610 , 1993 .

[26]  F. Langlais 4.20 – Chemical Vapor Infiltration Processing of Ceramic Matrix Composites , 2000 .