A simple GPU-based approach for 3D Voronoi diagram construction and visualization

Abstract In this paper we propose a simple GPU-based approach for discrete incremental approximation of 3D Voronoi diagram. By constructing region maps via GPU. Nearest sites, space clustering, and shortest distance query can be quickly answered by looking up the region map. In addition, we propose another representation of the 3D Voronoi diagram for visualization.

[1]  M. Overmars,et al.  Approximating generalized Voronoi diagrams in any dimension , 1995 .

[2]  James H. Davenport,et al.  Voronoi diagrams of set-theoretic solid models , 1992, IEEE Computer Graphics and Applications.

[3]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[4]  D. Meiron,et al.  Efficient algorithms for solving static hamilton-jacobi equations , 2003 .

[5]  Markus H. Gross,et al.  Signed distance transform using graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..

[6]  Craig Gotsman,et al.  Fast Approximation of High-Order Voronoi Diagrams and Distance Transforms on the GPU , 2006, J. Graph. Tools.

[7]  Marsette Vona,et al.  Voronoi Toolpaths for PCB Mechanical Etch: Simple and Intuitive Algorithms with the 3D GPU , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[8]  Mark H. Overmars,et al.  Hunting Voronoi Vertices , 1996, Comput. Geom..

[9]  Osamu Takahashi,et al.  Motion planning in a plane using generalized Voronoi diagrams , 1989, IEEE Trans. Robotics Autom..

[10]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[11]  Kokichi Sugihara,et al.  A robust Topology-Oriented Incremental algorithm for Voronoi diagrams , 1994, Int. J. Comput. Geom. Appl..

[12]  Bruce Randall Donald,et al.  Real-time robot motion planning using rasterizing computer graphics hardware , 1990, SIGGRAPH.

[13]  Mark H. Overmars,et al.  Approximating Voronoi Diagrams of Convex Sites in any Dimension , 1998, Int. J. Comput. Geom. Appl..

[14]  Suhas N. Diggavi,et al.  Efficient Max-Norm Distance Computation for Reliable Voxelization , 2003, Symposium on Geometry Processing.

[15]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[16]  Imma Boada,et al.  Approximations of 3D generalized Voronoi diagrams , 2005, EuroCG.

[17]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[18]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).