A simple GPU-based approach for 3D Voronoi diagram construction and visualization
暂无分享,去创建一个
[1] M. Overmars,et al. Approximating generalized Voronoi diagrams in any dimension , 1995 .
[2] James H. Davenport,et al. Voronoi diagrams of set-theoretic solid models , 1992, IEEE Computer Graphics and Applications.
[3] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[4] D. Meiron,et al. Efficient algorithms for solving static hamilton-jacobi equations , 2003 .
[5] Markus H. Gross,et al. Signed distance transform using graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..
[6] Craig Gotsman,et al. Fast Approximation of High-Order Voronoi Diagrams and Distance Transforms on the GPU , 2006, J. Graph. Tools.
[7] Marsette Vona,et al. Voronoi Toolpaths for PCB Mechanical Etch: Simple and Intuitive Algorithms with the 3D GPU , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.
[8] Mark H. Overmars,et al. Hunting Voronoi Vertices , 1996, Comput. Geom..
[9] Osamu Takahashi,et al. Motion planning in a plane using generalized Voronoi diagrams , 1989, IEEE Trans. Robotics Autom..
[10] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[11] Kokichi Sugihara,et al. A robust Topology-Oriented Incremental algorithm for Voronoi diagrams , 1994, Int. J. Comput. Geom. Appl..
[12] Bruce Randall Donald,et al. Real-time robot motion planning using rasterizing computer graphics hardware , 1990, SIGGRAPH.
[13] Mark H. Overmars,et al. Approximating Voronoi Diagrams of Convex Sites in any Dimension , 1998, Int. J. Comput. Geom. Appl..
[14] Suhas N. Diggavi,et al. Efficient Max-Norm Distance Computation for Reliable Voxelization , 2003, Symposium on Geometry Processing.
[15] Dinesh Manocha,et al. Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.
[16] Imma Boada,et al. Approximations of 3D generalized Voronoi diagrams , 2005, EuroCG.
[17] Ronald N. Perry,et al. Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.
[18] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).