Self-Averaging of Wigner Transforms in Random Media

AbstractWe establish the self-averaging properties of the Wigner transform of a mixture of states in the regime when the correlation length of the random medium is much longer than the wave length but much shorter than the propagation distance. The main ingredients in the proof are the error estimates for the semiclassical approximation of the Wigner transform by the solution of the Liouville equations, and the limit theorem for two-particle motion along the characteristics of the Liouville equations. The results are applied to a mathematical model of the time-reversal experiments for the acoustic waves, and self-averaging properties of the re-transmitted wave are proved.

[1]  G. Papanicolaou,et al.  A limit theorem for stochastic acceleration , 1980 .

[2]  Thierry Paul,et al.  Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time , 1998 .

[3]  Knut Sølna,et al.  Focusing of time-reversed reflections , 2002 .

[4]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[5]  Guillaume Bal,et al.  Time Reversal and Refocusing in Random Media , 2003, SIAM J. Appl. Math..

[6]  George Papanicolaou,et al.  Transport equations for elastic and other waves in random media , 1996 .

[7]  George Papanicolaou,et al.  Statistical Stability in Time Reversal , 2004, SIAM J. Appl. Math..

[8]  M. Fink,et al.  Mathematical foundations of the time reversal mirror , 2002 .

[9]  Knut Sølna,et al.  Time-Reversal Aperture Enhancement , 2003, Multiscale Model. Simul..

[10]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[11]  Guillaume Bal,et al.  Radiative transport limit for the random Schrödinger equation , 2001 .

[12]  Jean-Pierre Fouque,et al.  A time-reversal method for an acoustical pulse propagating in randomly layered media , 1997 .

[13]  Guillaume Bal,et al.  Time Reversal for Waves in Random Media , 2002 .

[14]  H. Yau,et al.  Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation , 1999 .

[15]  Guillaume Bal,et al.  Time reversal for classical waves in random media , 2001 .

[16]  Guillaume Bal,et al.  SELF-AVERAGING IN TIME REVERSAL FOR THE PARABOLIC WAVE EQUATION , 2002, nlin/0205025.

[17]  Didier Robert,et al.  Uniform semiclassical estimates for the propagation of quantum observables , 2002 .

[18]  Hongkai Zhao,et al.  Super-resolution in time-reversal acoustics. , 2002, The Journal of the Acoustical Society of America.

[19]  Mathias Fink,et al.  Acoustic time-reversal mirrors , 2001 .

[20]  Herbert Spohn,et al.  Derivation of the transport equation for electrons moving through random impurities , 1977 .

[21]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[22]  Alexis Vasseur,et al.  Classical and quantum transport in random media , 2003 .

[23]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .