Order of convergence of second order schemes based on the minmod limiter
暂无分享,去创建一个
[1] Vidar Thomée,et al. Besov Spaces and Applica-tions to DiKerence Methods for Initial Value Problems , 1975 .
[2] P. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .
[3] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[4] S. Osher,et al. High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws , 1998 .
[5] Yann Brenier,et al. The discrete one-sided Lipschitz condition for convex scalar conservation laws , 1988 .
[6] N. SIAMJ.,et al. THE OPTIMAL CONVERGENCE RATE OF MONOTONE FINITE DIFFERENCE METHODS FOR HYPERBOLIC CONSERVATION LAWS∗ , 1997 .
[7] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[8] Bojan Popov,et al. On Convergence of Minmod-Type Schemes , 2004, SIAM J. Numer. Anal..
[9] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[10] S. Osher,et al. Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .
[11] E. Tadmor,et al. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .
[12] Eitan Tadmor,et al. Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..
[13] Chi-Wang Shu. Numerical experiments on the accuracy of ENO and modified ENO schemes , 1990 .
[14] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[16] Randall J. LeVeque,et al. A geometric approach to high resolution TVD schemes , 1988 .
[17] S. Osher,et al. Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .
[18] Tao Tang,et al. The sharpness of Kuznetsov's O D x L 1 -error estimate for monotone difference schemes , 1995 .