Herschel imaging of the dust in the Helix Nebula (NGC 7293)

In our series of papers presenting the Herschel imaging of evolved planetary nebulae, we present images of the dust distribution in the Helix nebula (NGC 7293). Images at 70, 160, 250, 350, and 500 micron were obtained with the PACS and SPIRE instruments on board the Herschel satellite. The broadband maps show the dust distribution over the main Helix nebula to be clumpy and predominantly present in the barrel wall. We determined the spectral energy distribution of the main nebula in a consistent way using Herschel, IRAS, and Planck flux values. The emissivity index of 0.99 +/- 0.09, in combination with the carbon rich molecular chemistry of the nebula, indicates that the dust consists mainly of amorphous carbon. The dust excess emission from the central star disk is detected at 70 micron and the flux measurement agree with previous measurement. We present the temperature and dust column density maps. The total dust mass across the Helix nebula (without its halo) is determined to be 0.0035 solar mass at a distance of 216 pc. The temperature map shows dust temperatures between 22 and 42 K, which is similar to the kinetic temperature of the molecular gas, strengthening the fact that the dust and gas co-exist in high density clumps. Archived images are used to compare the location of the dust emission in the far infrared (Herschel) with the ionized (GALEX, Hbeta) and molecular hydrogen component. The different emission components are consistent with the Helix consisting of a thick walled barrel-like structure inclined to the line of sight. The radiation field decreases rapidly through the barrel wall.

[1]  R. B. Barreiro,et al.  Planck intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae , 2014, 1403.4723.

[2]  M. Barlow,et al.  Herschel spectral mapping of the Helix nebula (NGC 7293) - Extended CO photodissociation and OH+ emission , 2014, 1404.2177.

[3]  I. Yamamura,et al.  The Herschel Planetary Nebula Survey (HerPlaNS) - I. Data overview and analysis demonstration with NGC 6781 , 2014, 1403.2494.

[4]  N. Woolf,et al.  THE HELIX NEBULA VIEWED IN HCO+: LARGE-SCALE MAPPING OF THE J = 1 → 0 TRANSITION , 2013 .

[5]  Astrophysics,et al.  The bow-shock and high-speed jet in the faint, 40 arcmin diameter, outer halo of the evolved Helix planetary nebula (NGC 7293) , 2013, 1308.5460.

[6]  M. Barlow,et al.  A Herschel study of NGC 650 , 2013, 1308.2477.

[7]  L. Ziurys,et al.  CHEMICAL COMPLEXITY IN THE HELIX NEBULA: MULTI-LINE OBSERVATIONS OF H2CO, HCO+, AND CO , 2013 .

[8]  H'elene Roussel,et al.  Scanamorphos: A Map-making Software for Herschel and Similar Scanning Bolometer Arrays , 2012, 1205.2576.

[9]  S. Kwok,et al.  DISCOVERY OF A HALO AROUND THE HELIX NEBULA NGC 7293 IN THE WISE ALL-SKY SURVEY , 2012, 1207.4606.

[10]  Herschel observations of planetary nebulae in the MESS key program , 2011, Proceedings of the International Astronomical Union.

[11]  K. Sandstrom,et al.  Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes , 2011, 1106.5065.

[12]  The University of Manchester,et al.  Modelling the warm H2 infrared emission of the Helix nebula cometary knots , 2011, 1105.3506.

[13]  O. Krause,et al.  MESS (Mass-loss of Evolved StarS), a Herschel key program , 2010, 1012.2701.

[14]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[15]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[16]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[17]  N. Woolf,et al.  MOLECULAR SURVIVAL IN EVOLVED PLANETARY NEBULAE: DETECTION OF H2CO, c-C3H2, AND C2H IN THE HELIX , 2009 .

[18]  R. Ciardullo,et al.  ASTROMETRY WITH THE HUBBLE SPACE TELESCOPE: TRIGONOMETRIC PARALLAXES OF PLANETARY NEBULA NUCLEI NGC 6853, NGC 7293, ABELL 31, AND DeHt 5 , 2009, 0909.4281.

[19]  S. Viti,et al.  A “FIREWORK” OF H2 KNOTS IN THE PLANETARY NEBULA NGC 7293 (THE HELIX NEBULA) , 2009 .

[20]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[21]  M. Richer,et al.  Optical line profiles of the Helix planetary nebula (NGC 7293) to large radii , 2007, 0711.3667.

[22]  F. Sabbadin,et al.  The Three-Dimensional Ionization Structure and Evolution of NGC 6720, The Ring Nebula , 2007 .

[23]  P. J. Huggins,et al.  A Debris Disk around the Central Star of the Helix Nebula? , 2007, astro-ph/0702296.

[24]  W. Latter,et al.  Infrared Observations of the Helix Planetary Nebula , 2006, astro-ph/0607541.

[25]  A. Manchado,et al.  The Dynamical Evolution of Planetary Nebulae after the Fast Wind , 2006, Proceedings of the International Astronomical Union.

[26]  P. J. Huggins,et al.  The formation of globules in planetary nebulae , 2005, Proceedings of the International Astronomical Union.

[27]  P. McCullough,et al.  The Multitude of Molecular Hydrogen Knots in the Helix Nebula , 2005, astro-ph/0509887.

[28]  Ireland,et al.  The creation of the Helix planetary nebula (NGC 7293) by multiple events , 2005, astro-ph/0504295.

[29]  P. Caselli,et al.  H2 Formation on Grain Surfaces , 2004, Proceedings of the International Astronomical Union.

[30]  P. R. McCullough,et al.  Unraveling the Helix Nebula: Its Structure and Knots , 2004, astro-ph/0407556.

[31]  A. Readhead,et al.  Anomalous Radio Emission from Dust in the Helix , 2004 .

[32]  R. Corradi,et al.  Ionized haloes in planetary nebulae: new discoveries, literature compilation and basic statistical properties , 2003 .

[33]  A. Tielens,et al.  Molecular Hydrogen Formation in the Interstellar Medium , 2002, astro-ph/0207035.

[34]  J. Yates,et al.  Submillimetre photometry of post‐asymptotic giant branch stars , 2002 .

[35]  P. McCullough,et al.  Large-Scale Extended Emission around the Helix Nebula: Dust, Molecules, Atoms, and Ions , 2002 .

[36]  S. Padin,et al.  The Cosmic Background Imager , 2000, astro-ph/0012212.

[37]  P. Goldsmith Molecular Depletion and Thermal Balance in Dark Cloud Cores , 2000 .

[38]  G. Ferland,et al.  Properties of Dust Grains in Planetary Nebulae. I. The Ionized Region of NGC 6445 , 1999, astro-ph/9910400.

[39]  P. J. Huggins,et al.  The Molecular Envelope of the Helix Nebula , 1999 .

[40]  K. Kwitter,et al.  Morphology and Composition of the Helix Nebula , 1999, astro-ph/9901060.

[41]  C. O’Dell Imaging and Spectroscopy of the Helix Nebula: The Ring Is Actually a Disk , 1998 .

[42]  J. Brucato,et al.  Temperature Dependence of the Absorption Coefficient of Cosmic Analog Grains in the Wavelength Range 20 Microns to 2 Millimeters , 1998 .

[43]  J. Walsh,et al.  The nature of the cometary knots in the Helix planetary nebula (NGC 7293) , 1998 .

[44]  P. J. Huggins,et al.  Infrared Imaging and Spectroscopy of the Helix with ISOCAM , 1998 .

[45]  E. I. Robson,et al.  The dust content of evolved circumstellar envelopes and the optical properties of dust at submillimeter to radio wavelengths , 1993 .

[46]  P. J. Huggins,et al.  CO in the planetary nebulae NGC 2346 and 6720 , 1986 .