Dynamic causal modeling of layered magnetoencephalographic event-related responses

The layered architecture of cortex is thought to play a fundamental role in shaping cortical computations. However, direct electrophysiological measurements of layered activity are not possible non-invasively in humans. Recent advances have shown that a distinction of two layers can be achieved using magnetoencephalography in combination with head casts and advanced spatial modeling. In this technical note, we present a dynamic causal model of a single cortical microcircuit that models event related potentials. The model captures the average dynamics of a detailed two layered circuit. It combines a temporal model of neural dynamics with a spatial model of a layer specific lead field to facilitate layer separation. In simulations we show that the spatial arrangement of the two layers can be successfully recovered using Bayesian inference. The layered model can also be distinguished from a single dipole model. We conclude that precision magnetoencephalography in combination with detailed dynamical system modeling can be used to study non-invasively the fast dynamics of layered computations.

[1]  Hojjat Adeli,et al.  Medicine and Biology , 2005 .

[2]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[4]  Stewart Shipp,et al.  Neural Elements for Predictive Coding , 2016, Front. Psychol..

[5]  Dominique L. Pritchett,et al.  Neural Correlates of Tactile Detection: A Combined Magnetoencephalography and Biophysically Based Computational Modeling Study , 2007, The Journal of Neuroscience.

[6]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[7]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[8]  Niall Holmes,et al.  Moving magnetoencephalography towards real-world applications with a wearable system , 2018, Nature.

[9]  Pieter R. Roelfsema,et al.  Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation , 2013, Current Biology.

[10]  Martin Havlicek,et al.  A dynamical model of the laminar BOLD response , 2019, NeuroImage.

[11]  Antoine Lutti,et al.  Discrimination of cortical laminae using MEG , 2014, NeuroImage.

[12]  Klaas E. Stephan,et al.  A hemodynamic model for layered BOLD signals , 2016, NeuroImage.

[13]  Felix Blankenburg,et al.  Subjective Rating of Weak Tactile Stimuli Is Parametrically Encoded in Event-Related Potentials , 2013, The Journal of Neuroscience.

[14]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[15]  C. Schroeder,et al.  Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Karl J. Friston,et al.  Neural masses and fields in dynamic causal modeling , 2013, Front. Comput. Neurosci..

[17]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[18]  Anders M. Dale,et al.  On the Estimation of Population-Specific Synaptic Currents from Laminar Multielectrode Recordings , 2011, Front. Neuroinform..

[19]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[20]  Matthew J. Brookes,et al.  A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers , 2017, NeuroImage.

[21]  René Scheeringa,et al.  The relationship between oscillatory EEG activity and the laminar-specific BOLD signal , 2016, Proceedings of the National Academy of Sciences.

[22]  F. D. Lange,et al.  Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback , 2016, Current Biology.

[23]  Karl J. Friston,et al.  Forward and backward connections in the brain: A DCM study of functional asymmetries , 2009, NeuroImage.

[24]  Dominique L. Pritchett,et al.  Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. , 2009, Journal of neurophysiology.

[25]  Saskia Haegens,et al.  Laminar Profile and Physiology of the α Rhythm in Primary Visual, Auditory, and Somatosensory Regions of Neocortex , 2015, The Journal of Neuroscience.

[26]  Simon B. Eickhoff,et al.  BA3b and BA1 activate in a serial fashion after median nerve stimulation: Direct evidence from combining source analysis of evoked fields and cytoarchitectonic probabilistic maps , 2011, NeuroImage.

[27]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  Karl J. Friston,et al.  The functional anatomy of the MMN: A DCM study of the roving paradigm , 2008, NeuroImage.

[29]  Gareth R. Barnes,et al.  The use of anatomical constraints with MEG beamformers , 2003, NeuroImage.

[30]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[31]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[32]  M. P. van den Heuvel,et al.  Linking contemporary high resolution magnetic resonance imaging to the von economo legacy: A study on the comparison of MRI cortical thickness and histological measurements of cortical structure , 2015, Human brain mapping.

[33]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[34]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[35]  Florian Willomitzer,et al.  Consequences of EEG electrode position error on ultimate beamformer source reconstruction performance , 2014, Front. Neurosci..

[36]  Alexandre Gramfort,et al.  Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals , 2015, NeuroImage.

[37]  Holly Rossiter,et al.  Lamina-specific cortical dynamics in human visual and sensorimotor cortices , 2018, eLife.

[38]  Matthew J. Brookes,et al.  On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study , 2016, PloS one.

[39]  D. Norris,et al.  Layer‐specific BOLD activation in human V1 , 2010, Human brain mapping.

[40]  Karl J. Friston,et al.  EEG and MEG Data Analysis in SPM8 , 2011, Comput. Intell. Neurosci..

[41]  Jakob Heinzle,et al.  A Microcircuit Model of the Frontal Eye Fields , 2007, The Journal of Neuroscience.

[42]  N. Ramsey,et al.  Cortical Depth-Dependent Temporal Dynamics of the BOLD Response in the Human Brain , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[43]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[44]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization , 2006, NeuroImage.

[45]  Gareth R. Barnes,et al.  Estimates of cortical column orientation improve MEG source inversion , 2019, NeuroImage.

[46]  Mainak Jas,et al.  Human Neocortical Neurosolver (HNN): A new software tool for interpreting the cellular and network origin of human MEG/EEG data , 2019, bioRxiv.

[47]  Adeel Razi,et al.  Dynamic causal modelling revisited , 2017, NeuroImage.

[48]  Peter J. Koopmans,et al.  Multi-echo fMRI of the cortical laminae in humans at 7T , 2011, NeuroImage.

[49]  Antoine Lutti,et al.  High precision anatomy for MEG , 2014, NeuroImage.

[50]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[51]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[52]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[53]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[54]  L. Vaina,et al.  Mapping the signal‐to‐noise‐ratios of cortical sources in magnetoencephalography and electroencephalography , 2009, Human brain mapping.

[55]  R. Goebel,et al.  Frequency preference and attention effects across cortical depths in the human primary auditory cortex , 2015, Proceedings of the National Academy of Sciences.

[56]  Gareth R. Barnes,et al.  Non-invasive laminar inference with MEG: Comparison of methods and source inversion algorithms , 2017, NeuroImage.

[57]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[58]  Sylvain Baillet,et al.  Magnetoencephalography for brain electrophysiology and imaging , 2017, Nature Neuroscience.

[59]  Klaas E. Stephan,et al.  Laminar fMRI and computational theories of brain function , 2017, NeuroImage.

[60]  Karl J. Friston,et al.  Linking canonical microcircuits and neuronal activity: Dynamic causal modelling of laminar recordings , 2017, NeuroImage.

[61]  Matthew J. Brookes,et al.  Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography , 2019, NeuroImage.

[62]  Robert Turner,et al.  Recent applications of UHF‐MRI in the study of human brain function and structure: a review , 2016, NMR in biomedicine.

[63]  Peter J. Molfese,et al.  Layer-dependent activity in human prefrontal cortex during working memory , 2018, Nature Neuroscience.

[64]  C E Schroeder,et al.  Electrophysiological evidence for overlapping dominant and latent inputs to somatosensory cortex in squirrel monkeys. , 1995, Journal of neurophysiology.

[65]  David G Norris,et al.  Dissociable laminar profiles of concurrent bottom-up and top-down modulation in the human visual cortex , 2018, bioRxiv.

[66]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[67]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.