Learning patient-specific parameters for a diffuse interface glioblastoma model from neuroimaging data

Parameters in mathematical models for glioblastoma multiforme (GBM) tumour growth are highly patient specific. Here we aim to estimate parameters in a Cahn-Hilliard type diffuse interface model in an optimised way using model order reduction (MOR) based on proper orthogonal decomposition (POD). Based on snapshots derived from finite element simulations for the full order model (FOM) we use POD for dimension reduction and solve the parameter estimation for the reduced order model (ROM). Neuroimaging data are used to define the highly inhomogeneous diffusion tensors as well as to define a target functional in a patient specific manner. The reduced order model heavily relies on the discrete empirical interpolation method (DEIM) which has to be appropriately adapted in order to deal with the highly nonlinear and degenerate parabolic PDEs. A feature of the approach is that we iterate between full order solves with new parameters to compute a POD basis function and sensitivity based parameter estimation for the ROM problems. The algorithm is applied using neuroimaging data for two clinical test cases and we can demonstrate that the reduced order approach drastically decreases the computational effort.

[1]  Zhibin Huang,et al.  Supplementary Materials for A Generalized Linear-Quadratic Model for Radiosurgery, Stereotactic Body Radiation Therapy, and High-Dose Rate Brachytherapy , 2010 .

[2]  Luigi Preziosi,et al.  Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model , 2016, Biomechanics and Modeling in Mechanobiology.

[3]  Michael Hinze,et al.  POD reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations , 2017, Advances in Computational Mathematics.

[4]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[5]  Panagiotis Angelikopoulos,et al.  Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference , 2018, IEEE Transactions on Medical Imaging.

[6]  K. Afanasiev,et al.  Adaptive Control Of A Wake Flow Using Proper Orthogonal Decomposition1 , 2001 .

[7]  J. Murray,et al.  A quantitative model for differential motility of gliomas in grey and white matter , 2000, Cell proliferation.

[8]  Jill S Barnholtz-Sloan,et al.  Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007 , 2017, Neuro-oncology.

[9]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[10]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[11]  P. Gullino,et al.  Diffusion and convection in normal and neoplastic tissues. , 1974, Cancer research.

[12]  Davide Carlo Ambrosi,et al.  A computational framework for the personalized clinical treatment of glioblastoma multiforme , 2018 .

[13]  Harald Garcke,et al.  A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport , 2015, 1508.00437.

[14]  T. Hillen,et al.  Glioma follow white matter tracts: a multiscale DTI-based model , 2015, Journal of mathematical biology.

[15]  C. Schaller,et al.  MATHEMATICAL MODELLING OF GLIOBLASTOMA TUMOUR DEVELOPMENT: A REVIEW , 2005 .

[16]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[17]  Víctor M. Pérez-García,et al.  Hypoxic Cell Waves Around Necrotic Cores in Glioblastoma: A Biomathematical Model and Its Therapeutic Implications , 2012, Bulletin of Mathematical Biology.

[18]  J. Fowler The linear-quadratic formula and progress in fractionated radiotherapy. , 1989, The British journal of radiology.

[19]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[20]  H. Frieboes,et al.  Computer simulation of glioma growth and morphology , 2007, NeuroImage.

[21]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[22]  K. Swanson,et al.  The biology and mathematical modelling of glioma invasion: a review , 2017, Journal of The Royal Society Interface.

[23]  K. Painter,et al.  Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion. , 2013, Journal of theoretical biology.

[24]  Natalia L. Komarova,et al.  Mathematical Oncology: Using Mathematics to Enable Cancer Discoveries , 2014, Am. Math. Mon..

[25]  Jill S Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015. , 2018, Neuro-oncology.

[26]  G Powathil,et al.  Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy , 2007, Physics in medicine and biology.

[27]  Pasquale Ciarletta,et al.  Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture , 2011 .

[28]  Timothy C Ryken,et al.  Toward precision medicine in glioblastoma: the promise and the challenges. , 2015, Neuro-oncology.

[29]  Michael Hinze,et al.  POD for Optimal Control of the Cahn-Hilliard System Using Spatially Adapted Snapshots , 2017, Lecture Notes in Computational Science and Engineering.

[30]  A. Friedman,et al.  Higher order nonlinear degenerate parabolic equations , 1990 .

[31]  Zhibin Huang,et al.  A Generalized Linear-Quadratic Model for Radiosurgery, Stereotactic Body Radiation Therapy, and High–Dose Rate Brachytherapy , 2010, Science Translational Medicine.

[32]  John Missimer,et al.  Measurement of the extracellular space in brain tumors using 76Br-bromide and PET. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[33]  K. Swanson,et al.  A mathematical model for brain tumor response to radiation therapy , 2009, Journal of mathematical biology.

[34]  Hervé Delingette,et al.  Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation , 2005, IEEE Transactions on Medical Imaging.

[35]  R. M. Ford,et al.  Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients , 1991 .

[36]  Ara Darzi,et al.  Preparing for precision medicine. , 2012, The New England journal of medicine.

[37]  Alfio Quarteroni,et al.  Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method , 2018, Computer Methods in Applied Mechanics and Engineering.

[38]  Kristin R. Swanson,et al.  Patient-Specific Mathematical Neuro-Oncology: Using a Simple Proliferation and Invasion Tumor Model to Inform Clinical Practice , 2015, Bulletin of mathematical biology.

[39]  J. Murray,et al.  Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion , 2003, Journal of the Neurological Sciences.

[40]  J. Tinsley Oden,et al.  Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth , 2012, Journal of Mathematical Biology.

[41]  Luigi Preziosi,et al.  Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications , 2009, Journal of mathematical biology.

[42]  R. Guillevin,et al.  Simulation of anisotropic growth of low‐grade gliomas using diffusion tensor imaging , 2005, Magnetic resonance in medicine.

[43]  C. Engwer,et al.  Effective equations for anisotropic glioma spread with proliferation: a multiscale approach and comparisons with previous settings. , 2016, Mathematical medicine and biology : a journal of the IMA.

[44]  K Hendrickson,et al.  Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach , 2010, Physics in medicine and biology.

[45]  Philip Hahnfeldt,et al.  Simple ODE models of tumor growth and anti-angiogenic or radiation treatment , 2001 .

[46]  Thomas Hillen,et al.  A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread , 2018, Bulletin of mathematical biology.

[47]  J. Tinsley Oden,et al.  On the unsteady Darcy–Forchheimer–Brinkman equation in local and nonlocal tumor growth models , 2018, Mathematical Models and Methods in Applied Sciences.

[48]  Harald Garcke,et al.  A coupled surface-Cahn--Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes , 2015, 1509.03655.

[49]  B. Bedogni,et al.  Hypoxia, melanocytes and melanoma – survival and tumor development in the permissive microenvironment of the skin , 2009, Pigment cell & melanoma research.

[50]  Elena Faggiano,et al.  A personalized mathematical tool for neuro-oncology: A clinical case study , 2018, International Journal of Non-Linear Mechanics.

[51]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.