Bifidobacteria: Ecology and Coevolution With the Host

[1]  M. Delledonne,et al.  Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach , 2016, The ISME Journal.

[2]  F. Turroni,et al.  Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment , 2015, Applied and Environmental Microbiology.

[3]  N. Segata,et al.  Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut , 2015, Scientific Reports.

[4]  F. Turroni,et al.  Glycan cross-feeding activities between bifidobacteria under in vitro conditions , 2015, Front. Microbiol..

[5]  N. Segata,et al.  Exploring Vertical Transmission of Bifidobacteria from Mother to Child , 2015, Applied and Environmental Microbiology.

[6]  M. Ventura,et al.  Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. , 2015, The Journal of pediatrics.

[7]  C. Kost,et al.  Metabolic cross-feeding via intercellular nanotubes among bacteria , 2015, Nature Communications.

[8]  M. O'Connell Motherway,et al.  Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium , 2014, BMC Microbiology.

[9]  F. Turroni,et al.  Investigation of the Evolutionary Development of the Genus Bifidobacterium by Comparative Genomics , 2014, Applied and Environmental Microbiology.

[10]  R. Barrangou,et al.  Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium , 2014, Applied and Environmental Microbiology.

[11]  F. Turroni,et al.  Genomic Characterization and Transcriptional Studies of the Starch-Utilizing Strain Bifidobacterium adolescentis 22L , 2014, Applied and Environmental Microbiology.

[12]  M. O'Connell Motherway,et al.  Metabolism of Sialic Acid by Bifidobacterium breve UCC2003 , 2014, Applied and Environmental Microbiology.

[13]  M. Ventura,et al.  Genomic Overview and Biological Functions of Exopolysaccharide Biosynthesis in Bifidobacterium spp , 2013, Applied and Environmental Microbiology.

[14]  Bernard Henrissat,et al.  The abundance and variety of carbohydrate-active enzymes in the human gut microbiota , 2013, Nature Reviews Microbiology.

[15]  H. Huber,et al.  Microbial syntrophy: interaction for the common good. , 2013, FEMS microbiology reviews.

[16]  Koji Yamauchi,et al.  Isolation of a Bifidogenic Peptide from the Pepsin Hydrolysate of Bovine Lactoferrin , 2013, Applied and Environmental Microbiology.

[17]  M. Delledonne,et al.  Exploration of the Genomic Diversity and Core Genome of the Bifidobacterium adolescentis Phylogenetic Group by Means of a Polyphasic Approach , 2012, Applied and Environmental Microbiology.

[18]  F. Turroni,et al.  Host-microbe interactions that facilitate gut colonization by commensal bifidobacteria. , 2012, Trends in microbiology.

[19]  B. Henrissat,et al.  Bifidobacterium asteroides PRL2011 Genome Analysis Reveals Clues for Colonization of the Insect Gut , 2012, PloS one.

[20]  M. Severgnini,et al.  Diversity of Bifidobacteria within the Infant Gut Microbiota , 2012, PloS one.

[21]  A. Margolles,et al.  Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells , 2012 .

[22]  H. Flint,et al.  Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon , 2012, The ISME Journal.

[23]  Aldert L. Zomer,et al.  Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection , 2012, Proceedings of the National Academy of Sciences.

[24]  Nan Shang,et al.  In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. , 2011, Anaerobe.

[25]  F. Leroy,et al.  Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. , 2011, International journal of food microbiology.

[26]  F. Turroni,et al.  Genomics and ecological overview of the genus Bifidobacterium. , 2011, International journal of food microbiology.

[27]  Ziding Zhang,et al.  Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium , 2011, Microbial cell factories.

[28]  Maria A M Reis,et al.  Advances in bacterial exopolysaccharides: from production to biotechnological applications. , 2011, Trends in biotechnology.

[29]  Aldert L. Zomer,et al.  Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor , 2011, Proceedings of the National Academy of Sciences.

[30]  Eric Walter,et al.  Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. , 2011, FEMS microbiology ecology.

[31]  T. Chatila,et al.  The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota , 2011, Science.

[32]  D. Sinderen,et al.  Carbohydrate metabolism in Bifidobacteria , 2011, Genes & Nutrition.

[33]  Aldert L. Zomer,et al.  Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging , 2010, Proceedings of the National Academy of Sciences.

[34]  L. T. Angenent,et al.  Succession of microbial consortia in the developing infant gut microbiome , 2010, Proceedings of the National Academy of Sciences.

[35]  Aldert L. Zomer,et al.  Characterization of the Serpin-Encoding Gene of Bifidobacterium breve 210B , 2010, Applied and Environmental Microbiology.

[36]  Marcus J. Claesson,et al.  The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity , 2009, PLoS genetics.

[37]  S. Mazmanian,et al.  The gut microbiota shapes intestinal immune responses during health and disease , 2009, Nature Reviews Immunology.

[38]  G. Falony,et al.  Coculture Fermentations of Bifidobacterium Species and Bacteroides thetaiotaomicron Reveal a Mechanistic Insight into the Prebiotic Effect of Inulin-Type Fructans , 2009, Applied and Environmental Microbiology.

[39]  J. Chapman,et al.  The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome , 2008, Proceedings of the National Academy of Sciences.

[40]  H. Flint,et al.  Proposal of a neotype strain (A1-86) for Eubacterium rectale. Request for an opinion. , 2008, International journal of systematic and evolutionary microbiology.

[41]  C. Edwards,et al.  Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate? , 2006, The British journal of nutrition.

[42]  P. A. van den Brandt,et al.  Factors Influencing the Composition of the Intestinal Microbiota in Early Infancy , 2006, Pediatrics.

[43]  D. van Sinderen,et al.  Screening for and Identification of Starch-, Amylopectin-, and Pullulan-Degrading Activities in Bifidobacterial Strains , 2006, Applied and Environmental Microbiology.

[44]  M. Affolter,et al.  A Serpin from the Gut Bacterium Bifidobacterium longum Inhibits Eukaryotic Elastase-like Serine Proteases* , 2006, Journal of Biological Chemistry.

[45]  Gerald E. Lobley,et al.  Two Routes of Metabolic Cross-Feeding between Bifidobacterium adolescentis and Butyrate-Producing Anaerobes from the Human Gut , 2006, Applied and Environmental Microbiology.

[46]  R. Cavicchioli,et al.  Serpins in Unicellular Eukarya, Archaea, and Bacteria: Sequence Analysis and Evolution , 2004, Journal of Molecular Evolution.

[47]  S. Fanaro,et al.  Fecal flora measurements of breastfed infants using an integrated transport and culturing system , 2003, Acta paediatrica.

[48]  Peer Bork,et al.  The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  V. Marshall,et al.  Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. , 2001, Biotechnology advances.

[50]  H. Flint,et al.  Phylogenetic Relationships of Butyrate-Producing Bacteria from the Human Gut , 2000, Applied and Environmental Microbiology.

[51]  Pieter C Dorrestein,et al.  Microbial metabolic exchange--the chemotype-to-phenotype link. , 2011, Nature chemical biology.