Theory and computation of the steady state harmonic response of viscoelastic rubber parts

[1]  P. Flory,et al.  Thermodynamic relations for high elastic materials , 1961 .

[2]  Walter Noll,et al.  Foundations of Linear Viscoelasticity , 1961 .

[3]  L. Herrmann Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem , 1965 .

[4]  G. Lianis,et al.  Small deformations superposed on an initial large deformation in viscoelastic bodies , 1965 .

[5]  Samuel W. Key,et al.  A variational principle for incompressible and nearly-incompressible anisotropic elasticity , 1969 .

[6]  R. Penn Volume Changes Accompanying the Extension of Rubber , 1970 .

[7]  F. J. Lockett,et al.  Nonlinear viscoelastic solids , 1972 .

[8]  P. Chadwick,et al.  Inflation-Extension and Eversion of a Tube of Incompressible Isotropic Elastic Material , 1972 .

[9]  D. Joseph,et al.  Principles of non-Newtonian fluid mechanics , 1974 .

[10]  W. Spaans The finite element methods , 1975 .

[11]  A. G. James,et al.  Strain energy functions of rubber. II. The characterization of filled vulcanizates , 1975 .

[12]  A. G. James,et al.  Strain energy functions of rubber. I. Characterization of gum vulcanizates , 1975 .

[13]  R. Rivlin Some research directions in finite elasticity theory , 1977 .

[14]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[15]  Michel Bercovier,et al.  A finite element method for the analysis of rubber parts, experimental and analytical assessment , 1981 .

[16]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[17]  R. L. Sani,et al.  Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements , 1982 .

[18]  J. C. Nagtegaal,et al.  Finite element analysis of sinusoidal small-amplitude vibrations in deformed viscoelastic solids. Part I: Theoretical development , 1983 .

[19]  E. Reissner On a variational principle for elastic displacements and pressure , 1984 .

[20]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[21]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[22]  J. Tinsley Oden,et al.  Finite Elements, Mathematical Aspects. , 1986 .

[23]  J. C. Simo,et al.  Formulation and Computational Aspects of a Three-Dimensional Finite Strain Viscoelastic Damage Model , 1986 .

[24]  S. Silling Incompressibility in Dynamic Relaxation , 1987 .

[25]  K. Bathe,et al.  A finite element formulation for nonlinear incompressible elastic and inelastic analysis , 1987 .

[26]  K. N. Morman An adaptation of finite linear viscoelasticity theory for rubber-like viscoelasticity by use of a generalized strain measure , 1988 .

[27]  A. Zdunek,et al.  A theoretical study of the Brinell hardness test , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  J. C. Rice,et al.  On numerically accurate finite element solutions in the fully plastic range , 1990 .

[29]  A. Zdunek Determination of material response functions for prestrained rubbers , 1992 .

[30]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .