Adaptive backstepping controller design using stochastic small-gain theorem

A more general class of stochastic nonlinear systems with unmodeled dynamics and uncertain nonlinear functions are considered in this paper. With the concept of input-to-state practical stability (ISpS) and nonlinear small-gain theorem being extended to stochastic case, by combining stochastic small-gain theorem with backstepping design technique, an adaptive output-feedback controller is proposed. It is shown that the closed-loop system is practically stable in probability. A simulation example demonstrates the control scheme.

[1]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[2]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[3]  Ji-Feng Zhang,et al.  Minimal-order observer and output-feedback stabilization control design of stochastic nonlinear systems , 2004 .

[4]  P. Florchinger Feedback Stabilization of Affine in the Control Stochastic Differential Systems by the Control Lyapunov Function Method , 1997 .

[5]  Zhong-Ping Jiang,et al.  Nonlinear small-gain theorems for discrete-time feedback systems and applications , 2004, Autom..

[6]  David J. Hill,et al.  General Instability Results for Interconnected Systems , 1983 .

[7]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[8]  J. Tsinias Stochastic input-to-state stability and applications to global feedback stabilization , 1998 .

[9]  Miroslav Krstic,et al.  Stabilization of stochastic nonlinear systems driven by noise of unknown covariance , 2001, IEEE Trans. Autom. Control..

[10]  Ji-Feng Zhang,et al.  Reduced-order observer-based control design for nonlinear stochastic systems , 2004, Syst. Control. Lett..

[11]  Michael G. Safonov,et al.  Stability and Robustness of Multivariable Feedback Systems , 1980 .

[12]  Eduardo Sontag,et al.  Changing supply functions in input/state stable systems , 1995, IEEE Trans. Autom. Control..

[13]  Zhong-Ping Jiang,et al.  Design of Robust Adaptive Controllers for Nonlinear Systems with Dynamic Uncertainties , 1998, Autom..

[14]  C. Wen,et al.  Robust adaptive control of nonlinear discrete-time systems by backstepping without overparameterization , 2001, Autom..

[15]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[16]  E. Renshaw,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS , 1974 .

[17]  T. Başar,et al.  Backstepping Controller Design for Nonlinear Stochastic Systems Under a Risk-Sensitive Cost Criterion , 1999 .

[18]  Eduardo D. Sontag,et al.  On the Input-to-State Stability Property , 1995, Eur. J. Control.

[19]  Zhong-Ping Jiang,et al.  Robust control of uncertain nonlinear systems via measurement feedback , 1999, IEEE Trans. Autom. Control..

[20]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[21]  I. W. Sandberg,et al.  On the L 2 -boundedness of solutions of nonlinear functional equations , 1964 .

[22]  Eduardo Sontag Further facts about input to state stabilization , 1990 .

[23]  M. Krstić,et al.  Stochastic nonlinear stabilization—II: inverse optimality , 1997 .

[24]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[25]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[26]  P. Florchinger A universal formula for the stabilization of control stochastic differential equations , 1993 .

[27]  Yungang Liu,et al.  Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zero-dynamics , 2007, Science in China Series : Information Sciences.

[28]  Ruth J. Williams,et al.  Stabilization of stochastic nonlinear systems driven by noise of unknown covariance , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[29]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[30]  A. Isidori Nonlinear Control Systems , 1985 .

[31]  Ying Zhang,et al.  Discrete-time robust backstepping adaptive control for nonlinear time-varying systems , 2000, IEEE Trans. Autom. Control..

[32]  Ying Zhang,et al.  Robustness of an adaptive backstepping controller without modification , 1999 .

[33]  Miroslav Krstic,et al.  Output-feedback stochastic nonlinear stabilization , 1999, IEEE Trans. Autom. Control..

[34]  Miroslav Krstic,et al.  Stabilization of Nonlinear Uncertain Systems , 1998 .

[35]  I. Sandberg A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element , 1964 .

[36]  Yungang Liu,et al.  Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost , 2003, IEEE Trans. Autom. Control..

[37]  Zhong-Ping Jiang,et al.  A combined backstepping and small-gain approach to adaptive output feedback control , 1999, Autom..

[38]  P. Florchinger Lyapunov-Like Techniques for Stochastic Stability , 1995 .

[39]  Ji-Feng Zhang,et al.  Practical Output-Feedback Risk-Sensitive Control for Stochastic Nonlinear Systems with Stable Zero-Dynamics , 2006, SIAM J. Control. Optim..

[40]  Zhong-Ping Jiang,et al.  A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems , 1996, Autom..

[41]  M. Krstić,et al.  Stochastic nonlinear stabilization—I: a backstepping design , 1997 .