Helly's Theorem: New Variations and Applications

This survey presents recent Helly-type geometric theorems published since the appearance of the last comprehensive survey, more than ten years ago. We discuss how such theorems continue to be influential in computational geometry and in optimization.

[1]  David Rolnick,et al.  Quantitative (p, q) theorems in combinatorial geometry , 2017, Discret. Math..

[2]  Jesús A. De Loera,et al.  Random sampling in computational algebra: Helly numbers and violator spaces , 2015, J. Symb. Comput..

[3]  Márton Naszódi Proof of a Conjecture of Bárány, Katchalski and Pach , 2016, Discret. Comput. Geom..

[4]  Andreas Holmsen,et al.  HELLY-TYPE THEOREMS AND GEOMETRIC TRANSVERSALS , 2016 .

[5]  Silouanos Brazitikos Fractional Helly theorem for the diameter of convex sets , 2015, 1511.07779.

[6]  Andreas F. Holmsen,et al.  Another generalization of the colorful Carath\'eodory theorem , 2015 .

[7]  P. Soberón Helly‐type theorems for the diameter , 2015, 1509.07908.

[8]  Silouanos Brazitikos Brascamp-Lieb inequality and quantitative versions of Helly's theorem , 2015 .

[9]  J. D. Loera,et al.  Helly numbers of Algebraic Subsets of $\mathbb R^d$ , 2015, 1508.02380.

[10]  Marco Di Summa,et al.  A geometric approach to cut-generating functions , 2015, Mathematical Programming.

[11]  Beyond Chance-Constrained Convex Mixed-Integer Optimization: A Generalized Calafiore-Campi Algorithm and the notion of $S$-optimization , 2015, 1504.00076.

[12]  D. Rolnick,et al.  Quantitative Tverberg, Helly, & Carathéodory theorems , 2015, 1503.06116.

[13]  János Pach,et al.  Density and regularity theorems for semi-algebraic hypergraphs , 2015, SODA.

[14]  Ferenc Fodor,et al.  A fractional Helly theorem for boxes , 2014, Comput. Geom..

[15]  Bernd Gärtner,et al.  Sampling with Removal in LP-type Problems , 2014, J. Comput. Geom..

[16]  Jesús Jerónimo-Castro,et al.  On a problem by Dol'nikov , 2013, Discret. Math..

[17]  Xavier Goaoc,et al.  Bounding Helly Numbers via Betti Numbers , 2013, SoCG.

[18]  Andreas F. Holmsen,et al.  A geometric Hall-type theorem , 2014, 1412.6639.

[19]  Uri Zwick,et al.  Random-Facet and Random-Bland require subexponential time even for shortest paths , 2014, ArXiv.

[20]  Luis Pedro Montejano,et al.  A New Topological Helly Theorem and Some Transversal Results , 2014, Discret. Comput. Geom..

[21]  Ferenc Fodor,et al.  Colourful and Fractional (p,q)-theorems , 2014, Discret. Comput. Geom..

[22]  V. L. Dol'nikov,et al.  On transversals of quasialgebraic families of sets , 2013, J. Comb. Theory, Ser. A.

[23]  Imre B'ar'any,et al.  Helly type theorems for the sum of vectors in a normed plane , 2013, 1310.0910.

[24]  Sergei Sergeev,et al.  Tropical convexity over max-min semiring , 2013, 1303.7451.

[25]  János Pach,et al.  Ramsey-type results for semi-algebraic relations , 2013, SoCG '13.

[26]  Saugata Basu,et al.  A Helly-Type Theorem for Semi-monotone Sets and Monotone Maps , 2012, Discret. Comput. Geom..

[27]  Martin Tancer,et al.  Intersection Patterns of Convex Sets via Simplicial Complexes: A Survey , 2011, 1102.0417.

[28]  János Pach,et al.  Geometry — Intuitive, Discrete, and Convex , 2013 .

[29]  Andreas F. Holmsen Geometric Transversal Theory: T (3)-Families in the Plane , 2013 .

[30]  Luis Montejano,et al.  Transversals, Topology and Colorful Geometric Results , 2013 .

[31]  Marilyn Breen Dual Helly-Type Theorems For Unions Of Sets Starshaped Via Staircase Paths , 2013, Ars Comb..

[32]  Helly-type theorems for intersections of sets starshaped via orthogonally convex paths , 2012 .

[33]  Xavier Goaoc,et al.  Lower bounds to helly numbers of line transversals to disjoint congruent balls , 2012 .

[34]  Xavier Goaoc,et al.  Multinerves and helly numbers of acyclic families , 2012, SoCG '12.

[35]  Wolfgang Mulzer,et al.  Approximating Tverberg Points in Linear Time for Any Fixed Dimension , 2011, Discrete & Computational Geometry.

[36]  Roman N. Karasev,et al.  Analogues of the central point theorem for families with d-intersection property in ℝd , 2009, Comb..

[37]  Jean Cardinal,et al.  Helly Numbers of Polyominoes , 2011, CCCG.

[38]  Gennadiy Averkov,et al.  A proof of Lovász’s theorem on maximal lattice-free sets , 2011 .

[39]  Luis Pedro Montejano,et al.  Piercing Numbers for Balanced and Unbalanced Families , 2011, Discret. Comput. Geom..

[40]  Luis Pedro Montejano,et al.  Tolerance in Helly-Type Theorems , 2011, Discret. Comput. Geom..

[41]  Javier Bracho,et al.  A Helly Type Theorem for Abstract Projective Geometries , 2011, Discret. Comput. Geom..

[42]  Xavier Goaoc,et al.  Helly numbers of acyclic families , 2011, ArXiv.

[43]  Endre Szabó,et al.  Helly dimension of algebraic groups , 2009, J. Lond. Math. Soc..

[44]  Gunnar Floystad The colorful Helly theorem and colorful resolutions of ideals , 2011 .

[45]  Zsolt Tuza,et al.  Optimal guard sets and the Helly property , 2011, Eur. J. Comb..

[46]  Hans Raj Tiwary,et al.  On the computational complexity of Ham-Sandwich cuts, Helly sets, and related problems , 2011, STACS.

[47]  Santanu S. Dey,et al.  On Maximal S-Free Convex Sets , 2011, SIAM J. Discret. Math..

[48]  Jie Gao,et al.  Clustering lines in high-dimensional space: Classification of incomplete data , 2010, TALG.

[49]  Gérard Cornuéjols,et al.  Maximal Lattice-Free Convex Sets in Linear Subspaces , 2010, Math. Oper. Res..

[50]  Robert Weismantel,et al.  Transversal numbers over subsets of linear spaces , 2010, 1002.0948.

[51]  Kent Andersen,et al.  An Analysis of Mixed Integer Linear Sets Based on Lattice Point Free Convex Sets , 2009, Math. Oper. Res..

[52]  Paul Wollan,et al.  Voting in Agreeable Societies , 2008, Am. Math. Mon..

[53]  S. Gaubert,et al.  Carathéodory, Helly and the Others in the Max-Plus World , 2008, Discret. Comput. Geom..

[54]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[55]  J. Matousek,et al.  Geometric Discrepancy: An Illustrated Guide , 2009 .

[56]  Jirí Matousek,et al.  Dimension Gaps between Representability and Collapsibility , 2009, Discret. Comput. Geom..

[57]  Jürgen Eckhoff,et al.  Morris's pigeonhole principle and the Helly theorem for unions of convex sets , 2009 .

[58]  Gérard Cornuéjols,et al.  Minimal Valid Inequalities for Integer Constraints , 2009, Math. Oper. Res..

[59]  Gary L. Miller,et al.  Approximate center points with proofs , 2009, SCG '09.

[60]  Ruy Fabila Monroy,et al.  Very Colorful Theorems , 2009, Discret. Comput. Geom..

[61]  Xavier Goaoc,et al.  Some Discrete Properties of the Space of Line Transversals to Disjoint Balls , 2009 .

[62]  János Pach,et al.  Points surrounding the origin , 2008, Comb..

[63]  Jürgen Eckhoff Common transversals in the plane: The fractional perspective , 2008, Eur. J. Comb..

[64]  E. Bronstein Approximation of convex sets by polytopes , 2008 .

[65]  Luis Pedro Montejano,et al.  Colourful transversal theorems , 2008, Contributions Discret. Math..

[66]  Luis Pedro Montejano,et al.  A colorful theorem on transversal lines to plane convex sets , 2008, Comb..

[67]  Nir Halman,et al.  Discrete and Lexicographic Helly-Type Theorems , 2008, Discret. Comput. Geom..

[68]  Benson Farb,et al.  Group actions and Helly's theorem , 2008, 0806.1692.

[69]  Xavier Goaoc,et al.  Helly-Type Theorems for Approximate Covering , 2008, SCG '08.

[70]  Alicia Nieto-Reyes,et al.  The random Tukey depth , 2007, Comput. Stat. Data Anal..

[71]  Xavier Goaoc,et al.  Helly-Type Theorems for Line Transversals to Disjoint Unit Balls , 2008, Discret. Comput. Geom..

[72]  Nir Halman,et al.  Simple Stochastic Games, Parity Games, Mean Payoff Games and Discounted Payoff Games Are All LP-Type Problems , 2007, Algorithmica.

[73]  Gil Kalai,et al.  Leray numbers of projections and a topological Helly type theorem , 2007 .

[74]  Jesús Jerónimo-Castro Line Transversals to Translates of Unit Discs , 2007, Discret. Comput. Geom..

[75]  M. Bálek,et al.  Abstract Models of Optimization Problems , 2007 .

[76]  Stephan Hell Tverberg-type theorems and the Fractional Helly property , 2006 .

[77]  Jirí Matousek,et al.  Berge's theorem, fractional Helly, and art galleries , 2006, Discret. Math..

[78]  Jirí Matousek,et al.  Violator spaces: Structure and algorithms , 2006, Discret. Appl. Math..

[79]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[80]  Ferenc Fodor,et al.  A Helly-type transversal theorem for n-dimensional unit balls , 2006 .

[81]  V. Boltyanski,et al.  Jung's theorem for a pair of Minkowski spaces , 2006 .

[82]  Noga Alon,et al.  Crossing patterns of semi-algebraic sets , 2005, J. Comb. Theory, Ser. A.

[83]  Gil Kalai,et al.  A topological colorful Helly theorem , 2005 .

[84]  Charles Fefferman,et al.  A sharp form of Whitney's extension theorem , 2005 .

[85]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[86]  Andreas F. Holmsen,et al.  Cremona convexity, frame convexity and a theorem of Santaló , 2004, math/0409219.

[87]  Jirí Matousek,et al.  Bounded VC-Dimension Implies a Fractional Helly Theorem , 2004, Discret. Comput. Geom..

[88]  Timothy M. Chan An optimal randomized algorithm for maximum Tukey depth , 2004, SODA '04.

[89]  Friedrich Eisenbrand,et al.  Fast Integer Programming in Fixed Dimension , 2003, ESA.

[90]  Jiří Matoušek,et al.  A fractional Helly theorem for convex lattice sets , 2003 .

[91]  Henrik Björklund,et al.  A Discrete Subexponential Algorithm for Parity Games , 2003, STACS.

[92]  Jürgen Eckhoff,et al.  A Survey of the Hadwiger-Debrunner (p, q)-problem , 2003 .

[93]  Ted G. Lewis,et al.  A Helly-Type Theorem for Line Transversals to Disjoint Unit Balls , 2003, Discret. Comput. Geom..

[94]  Konrad J. Swanepoel,et al.  Helly-type theorems for homothets of planar convex curves , 2002 .

[95]  Noga Alon,et al.  Transversal numbers for hypergraphs arising in geometry , 2002, Adv. Appl. Math..

[96]  Jiří Matoušek Intersection Patterns of Convex Sets , 2002 .

[97]  Luis Pedro Montejano,et al.  Helly-Type Theorems on the Homology of the Space of Transversals , 2002, Discret. Comput. Geom..

[98]  José L. Balcázar,et al.  Provably Fast Training Algorithms for Support Vector Machines , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[99]  Géza Tóth,et al.  Convex Sets in the Plane with Three of Every Four Meeting , 2001, Comb..

[100]  David Eppstein,et al.  Optimal Möbius Transformations for Information Visualization and Meshing , 2001, WADS.

[101]  Shlomo Reisner,et al.  Dropping a vertex or a facet from a convex polytope , 2001 .

[102]  Roman N. Karasev,et al.  Transversals for Families of Translates of a Two-Dimensional Convex Compact Set , 2000, Discret. Comput. Geom..

[103]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[104]  Imre Bárány,et al.  Colourful Linear Programming and its Relatives , 1997, Math. Oper. Res..

[105]  Noga Alon,et al.  A purely combinatorial proof of the Hadwiger Debrunner (p, q) Conjecture , 1997, Electron. J. Comb..

[106]  Imre Bárány,et al.  Caratheodory's theorem, colourful and applicable , 1997 .

[107]  Nina Amenta,et al.  A short proof of an interesting helly-type theorem , 1996, Discret. Comput. Geom..

[108]  David Eppstein,et al.  Approximating center points with iterative Radon points , 1996, Int. J. Comput. Geom. Appl..

[109]  Jirí Matousek,et al.  A Helly-Type Theorem for Unions of Convex Sets , 1995, SCG '95.

[110]  Ronen Basri,et al.  Recognition Using Region Correspondences , 1995, Proceedings of IEEE International Conference on Computer Vision.

[111]  Noga Alon,et al.  Bounding the piercing number , 1995, Discret. Comput. Geom..

[112]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[113]  Bernd Gärtner A Subexponential Algorithm for Abstract Optimization Problems , 1992, FOCS.

[114]  Jiří Matoušek,et al.  Lower Bounds for a Subexponential Optimization Algorithm , 1994, Random Struct. Algorithms.

[115]  Nina Amenta,et al.  Helly-type theorems and Generalized Linear Programming , 1994, Discret. Comput. Geom..

[116]  Nina Amenta,et al.  Bounded boxes, Hausdorff distance, and a new proof of an interesting Helly-type theorem , 1994, SCG '94.

[117]  J. Eckhoff Helly, Radon, and Carathéodory Type Theorems , 1993 .

[118]  P. Gruber Aspects of Approximation of Convex Bodies , 1993 .

[119]  N. Alon,et al.  Piercing convex sets and the hadwiger-debrunner (p , 1992 .

[120]  Noga Alon,et al.  Point Selections and Weak ε-Nets for Convex Hulls , 1992, Combinatorics, Probability and Computing.

[121]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[122]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[123]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[124]  Marilyn Breen,et al.  Starshaped unions and nonempty intersections of convex sets in , 1990 .

[125]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[126]  Zsolt Tuza Minimum number of elements representing a set system of given rank , 1989, J. Comb. Theory, Ser. A.

[127]  Rephael Wenger,et al.  Necessary and sufficient conditions for hyperplane transversals , 1989, SCG '89.

[128]  Peter Frankl Helly-type Theorems for Varieties , 1989, Eur. J. Comb..

[129]  Helge Tverberg,et al.  Proof of grünbaum's conjecture on common transversals for translates , 1989, Discret. Comput. Geom..

[130]  Peter Frankl,et al.  A helly type theorem for hypersurfaces , 1987, J. Comb. Theory, Ser. A.

[131]  Jürgen Eckhoff,et al.  An Upper-Bound theorem for families of convex sets , 1985 .

[132]  J. Pach,et al.  Helly"s theorem with volumes , 1984 .

[133]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[134]  Imre Bárány,et al.  A generalization of carathéodory's theorem , 1982, Discret. Math..

[135]  J. Pach,et al.  Quantitative Helly-type theorems , 1982 .

[136]  Gerard Sierksma,et al.  A Tverberg-type generalization of the Helly number of a convexity space , 1981 .

[137]  Robert E. Jamison-Waldner PARTITION NUMBERS FOR TREES AND ORDERED SETS , 1981 .

[138]  M. Katchalski,et al.  A Problem of Geometry in R n , 1979 .

[139]  A. J. Hoffman BINDING CONSTRAINTS AND HELLY NUMBERS , 1979 .

[140]  H. Scarf An observation on the structure of production sets with indivisibilities. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[141]  David E. Bell A Theorem Concerning the Integer Lattice , 1977 .

[142]  G. Wegner,et al.  d-Collapsing and nerves of families of convex sets , 1975 .

[143]  Jean-Paul Doignon,et al.  Convexity in cristallographical lattices , 1973 .

[144]  G. Nemhauser,et al.  Integer Programming , 2020 .

[145]  D. C. Kay,et al.  Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers , 1971 .

[146]  C. A. Rogers,et al.  The directions of the line segments and of the r -dimensional balls on the boundary of a convex body in Euclidean space , 1970 .

[147]  H. Debrunner,et al.  Helly Type Theorems Derived from Basic Singular Homology , 1970 .

[148]  Tom C. Brown Common Transversals , 1976, J. Comb. Theory, Ser. A.

[149]  H. Tverberg A Generalization of Radon's Theorem , 1966 .

[150]  V. Klee,et al.  Helly's theorem and its relatives , 1963 .

[151]  T. Motzkin,et al.  On components in some families of sets , 1961 .

[152]  H. Hadwiger,et al.  Über eine Variante zum Hellyschen Satz , 1957 .

[153]  H. Hadwiger Ueber Eibereiche mit gemeinsamer Treffgeraden , 1957 .

[154]  T. Motzkin A proof of Hilbert's Nullstellensatz , 1955 .

[155]  R. Rado A Theorem on General Measure , 1946 .

[156]  B. H. Neumann,et al.  On An Invariant of Plane Regions and Mass Distributions , 1945 .

[157]  E. Helly,et al.  Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten , 1930 .

[158]  E. Helly Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .

[159]  J. Radon Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .