Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles.

We experimentally demonstrate extremely narrow plasmon resonances with half-width of just several nanometers in regular arrays of metallic nanoparticles. These resonances are observed at Rayleigh's cutoff wavelengths for Wood anomalies and based on diffraction coupling of localized plasmons. We show experimentally that reflection from an array of nanoparticles can be completely suppressed at certain wavelengths. As a result, our metal nanostructures exhibit pi-jump for the phase of the reflected light.

[1]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[2]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[3]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[4]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[5]  A. Grigorenko Negative refractive index in artificial metamaterials. , 2006, Optics letters.

[6]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[7]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[8]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[9]  V. Podolskiy,et al.  Resonant light interaction with plasmonic nanowire systems , 2004, physics/0406068.

[10]  George C Schatz,et al.  Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. , 2004, The Journal of chemical physics.

[11]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[12]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[13]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[14]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[15]  I. Chuang,et al.  Experimental observations of a left-handed material that obeys Snell's law. , 2003, Physical review letters.

[16]  J. P. Woerdman,et al.  Plasmon-assisted transmission of entangled photons , 2002, Nature.

[17]  A. Grigorenko,et al.  Optomagnetic composite medium with conducting nanoelements , 2002, cond-mat/0205331.

[18]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[19]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[20]  Petr I. Nikitin,et al.  Surface plasmon resonance interferometry for micro-array biosensing , 2000 .

[21]  Petr I. Nikitin,et al.  Phase jumps and interferometric surface plasmon resonance imaging , 1999 .

[22]  Petr I. Nikitin,et al.  Surface plasmon resonance interferometer for bio- and chemical-sensors , 1998 .

[23]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[24]  Akira Kinbara,et al.  Optical effect of the substrate on the anomalous absorption of aggregated silver films , 1974 .

[25]  Lord Rayleigh,et al.  On the Dynamical Theory of Gratings , 1907 .

[26]  R. Wood XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum , 1902 .