Applications of a DNA-electrochemical biosensor

Abstract As carrier of genetic information, DNA is one of the most important intracellular targets that undergo modification and damage upon interaction with endogenous and exogenous factors. DNA is an excellent biomaterial for the construction of new devices, in nanotechnology and biosensor technology, for evaluation of DNA interaction with a broad range of chemical compounds and biomolecules, essential from a biological and a medical point of view. This review discusses recent advances on the design and applications of DNA-electrochemical biosensors that use DNA direct electrochemistry as a detection platform. AFM and voltammetric characterization of new bottom up immobilisation procedures of self-assembled nanostructures based on DNA single- and double-stranded, G-quadruplex, and i-motif configurations are presented, relevant for the development of new DNA-electrochemical biosensor devices. The applications of DNA-electrochemical biosensors, for the label-free detection of interactions with proteins, pharmaceutical compounds, metal ions and metal complexes, pollutants, free radicals, and electromagnetic radiation, were revisited.

[1]  Wenwei Tang,et al.  An electrochemical sensor based on polyaniline for monitoring hydroquinone and its damage on DNA. , 2014, Talanta.

[2]  T S Oretskaya,et al.  AFM and electroanalytical studies of synthetic oligonucleotide hybridization. , 2004, Biosensors & bioelectronics.

[3]  Hayriye Eda Satana Kara,et al.  Redox mechanism of anticancer drug idarubicin and in-situ evaluation of interaction with DNA using an electrochemical biosensor. , 2014, Bioelectrochemistry.

[4]  Adsorption of synthetic homo- and hetero-oligodeoxynucleotides onto highly oriented pyrolytic graphite: atomic force microscopy characterization. , 2006, Biophysical chemistry.

[5]  A. Oliveira‐Brett,et al.  Voltammetric determination of γ radiation-induced DNA damage , 2006 .

[6]  Lenka Hlavata,et al.  Evaluation of damage to DNA induced by UV-C radiation and chemical agents using electrochemical biosensor based on low molecular weight DNA and screen-printed carbon electrode , 2012 .

[7]  M. Lappert Comprehensive chemical kinetics. Volume 20 complex catalytic processess , 1979 .

[8]  T. Skov,et al.  Mimicking enzymatic effects of cytochrome P450 by an efficient biosensor for in vitro detection of DNA damage. , 2015, International journal of biological macromolecules.

[9]  M. Goulart,et al.  Electrochemical, spectroscopic and pharmacological approaches toward the understanding of biflorin DNA damage effects , 2016 .

[10]  R. Eritja,et al.  Atomic Force Microscopy and Voltammetric Investigation of Quadruplex Formation between a Triazole-Acridine Conjugate and Guanine-Containing Repeat DNA Sequences. , 2015, Analytical chemistry.

[11]  Shana O Kelley,et al.  Programming the detection limits of biosensors through controlled nanostructuring. , 2009, Nature nanotechnology.

[12]  M. Fojta,et al.  Electrochemical Sensing of Chromium‐Induced DNA Damage: DNA Strand Breakage by Intermediates of Chromium(VI) Electrochemical Reduction , 2007 .

[13]  Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. , 2011, Journal of hazardous materials.

[14]  A. M. Brett,et al.  Effect of pH and applied potential on the adsorption of DNA on highly oriented pyrolytic graphite electrodes. Atomic force microscopy surface characterisation , 2003 .

[15]  A. Oliveira‐Brett,et al.  Time-dependent polyguanylic acid structural modifications , 2014 .

[16]  S. C. B. Oliveira,et al.  In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals on a boron-doped diamond electrode. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[17]  A. M. Oliveira Brett,et al.  DNA imaged on a HOPG electrode surface by AFM with controlled potential. , 2005, Bioelectrochemistry.

[18]  Airton Deppman,et al.  Radiation interaction with DNA , 2004 .

[19]  S. Neidle,et al.  Triazole-acridine conjugates: redox mechanisms and in situ electrochemical evaluation of interaction with double-stranded DNA. , 2013, Bioelectrochemistry.

[20]  M. Fojta,et al.  Electrode potential-modulated cleavage of surface-confined DNA by hydroxyl radicals detected by an electrochemical biosensor. , 2000, Biosensors & bioelectronics.

[21]  D. K. Zeybek,et al.  A novel electrochemical DNA biosensor based on poly-(5-amino-2-mercapto-1,3,4-thiadiazole) modified glassy carbon electrode for the determination of nitrofurantoin , 2014 .

[22]  S. C. B. Oliveira,et al.  Boron doped diamond electrode pre-treatments effect on the electrochemical oxidation of dsDNA, DNA bases, nucleotides, homopolynucleotides and biomarker 8-oxoguanine , 2010 .

[23]  A. M. Brett,et al.  Voltammetric and sonovoltammetric studies on the oxidation of thymine and cytosine at a glassy carbon electrode , 1997 .

[24]  V. Diculescu,et al.  In situ dsDNA-bevacizumab anticancer monoclonal antibody interaction electrochemical evaluation. , 2015, Analytica chimica acta.

[25]  S. C. B. Oliveira,et al.  In situ evaluation of heavy metal-DNA interactions using an electrochemical DNA biosensor. , 2008, Bioelectrochemistry.

[26]  V. Diculescu,et al.  Electrochemistry of nanoscale DNA surface films on carbon. , 2006, Medical engineering & physics.

[27]  A. Oliveira‐Brett,et al.  Anodic voltammetry and AFM imaging of picomoles of adriamycin adsorbed onto carbon surfaces , 2002 .

[28]  A. M. Brett,et al.  Voltammetric Behavior of Antileukemia Drug Glivec. Part III: In Situ DNA Oxidative Damage by the Glivec Electrochemical Metabolite , 2006 .

[29]  A. Oliveira‐Brett,et al.  Atomic force microscopy and voltammetric characterisation of synthetic homo-oligodeoxynucleotides , 2013 .

[30]  Thrombin-Binding Aptamer Quadruplex Formation: AFM and Voltammetric Characterization , 2010, Journal of nucleic acids.

[31]  E. Paleček,et al.  Electrochemistry of Nucleic Acids , 2005 .

[32]  D. Compagnone,et al.  Detection of benzo(a)pyrene photodegradation products using DNA electrochemical sensors. , 2012, Biosensors & bioelectronics.

[33]  J. Vacek,et al.  Antioxidant, metal-binding and DNA-damaging properties of flavonolignans: a joint experimental and computational highlight based on 7-O-galloylsilybin. , 2013, Chemico-biological interactions.

[34]  T. Oretskaya,et al.  Atomic force microscopy characterization of synthetic pyrimidinic oligodeoxynucleotides adsorbed onto an HOPG electrode under applied potential , 2006 .

[35]  S. C. B. Oliveira,et al.  Electrochemical and AFM evaluation of hazard compounds-DNA interaction , 2009 .

[36]  Ana-Maria Chiorcea,et al.  Atomic force microscopy characterization of an electrochemical DNA-biosensor. , 2004, Bioelectrochemistry.

[37]  E. Paleček,et al.  Past, present and future of nucleic acids electrochemistry. , 2002, Talanta.

[38]  V. Diculescu,et al.  In situ electrochemical evaluation of dsDNA interaction with the anticancer drug danusertib nitrenium radical product using the DNA-electrochemical biosensor. , 2016, Bioelectrochemistry.

[39]  R. Eritja,et al.  Quadruplex nanostructures of d(TGGGGT): influence of sodium and potassium ions. , 2014, Analytical chemistry.

[40]  S. C. B. Oliveira,et al.  In Situ Evaluation of the Anticancer Antibody Rituximab-dsDNA Interaction Using a DNA-Electrochemical Biosensor , 2014 .

[41]  V. Diculescu,et al.  DNA - Cyanobacterial Hepatotoxins Microcystin-LR and Nodularin Interaction: Electrochemical Evaluation , 2012 .

[42]  S. Ozkan,et al.  Investigation of anticancer drug lapatinib and its interaction with dsDNA by electrochemical and spectroscopic techniques , 2014 .

[43]  S. C. B. Oliveira,et al.  Voltammetric and electrochemical impedance spectroscopy characterization of a cathodic and anodic pre-treated boron doped diamond electrode , 2010 .

[44]  A. Oliveira‐Brett,et al.  Hydroxyl radicals electrochemically generated in situ on a boron-doped diamond electrode , 2009 .

[45]  Ana Maria Oliveira-Brett,et al.  Redox behaviour of G-quadruplexes , 2014 .

[46]  Bengi Uslu,et al.  Electrochemical investigation of an interaction of the antidepressant drug aripiprazole with original and damaged calf thymus dsDNA , 2015 .

[47]  A. M. Brett Electrochemistry for probing DNA damage , 2006 .

[48]  DNA-electrochemical biosensors for investigating DNA damage , 2007 .

[49]  R. Eritja,et al.  Evaluation of the structure–activity relationship of thrombin with thrombin binding aptamers by voltammetry and atomic force microscopy , 2011 .

[50]  I. Willner,et al.  Amplified Electrochemical and Photoelectrochemical Analysis of DNA , 2005 .

[51]  V. Diculescu,et al.  In situ evaluation of anticancer drug methotrexate-DNA interaction using a DNA-electrochemical biosensor and AFM characterization. , 2011, Physical chemistry chemical physics : PCCP.

[52]  V. Diculescu,et al.  Electrochemical study of quercetin-DNA interactions: part I. Analysis in incubated solutions. , 2004, Bioelectrochemistry.

[53]  T. Oretskaya,et al.  Synthetic oligonucleotides: AFM characterisation and electroanalytical studies. , 2005, Bioelectrochemistry.

[54]  E. Paleček,et al.  Interactions of nucleic acids with electrically charged surfaces , 1978 .

[55]  A. Oliveira‐Brett,et al.  Electrochemical detection of in situ adriamycin oxidative damage to DNA. , 2002, Talanta.

[56]  A. Oliveira‐Brett,et al.  Electrochemical sensing of DNA-adriamycin interactions. , 2002, Bioelectrochemistry.

[57]  A. M. Brett,et al.  DNA imaged on a HOPG electrode surface by AFM with controlled potential. , 2005 .

[58]  V. Diculescu,et al.  Voltammetric determination of all DNA nucleotides. , 2004, Analytical biochemistry.

[59]  V. Diculescu,et al.  DNA interaction with palladium chelates of biogenic polyamines using atomic force microscopy and voltammetric characterization. , 2010, Analytical chemistry.

[60]  Shana O Kelley,et al.  Nanostructuring of patterned microelectrodes to enhance the sensitivity of electrochemical nucleic acids detection. , 2009, Angewandte Chemie.

[61]  S. C. B. Oliveira,et al.  In situ evaluation of chromium–DNA damage using a DNA-electrochemical biosensor , 2010, Analytical and bioanalytical chemistry.

[62]  R. Eritja,et al.  Self-assembled G-quadruplex nanostructures: AFM and voltammetric characterization. , 2013, Physical chemistry chemical physics : PCCP.

[63]  V. Diculescu,et al.  Electrochemical study of quercetin-DNA interactions: part II. In situ sensing with DNA biosensors. , 2004, Bioelectrochemistry.

[64]  G. Evtugyn,et al.  Impedimetric Detection of DNA Damage with the Sensor Based on Silver Nanoparticles and Neutral Red , 2015 .

[65]  A. M. Brett,et al.  Atomic Force Microscopy of DNA Immobilized onto a Highly Oriented Pyrolytic Graphite Electrode Surface , 2003 .

[66]  A. M. Brett,et al.  Voltammetric Behavior of Antileukemia Drug Glivec. Part I – Electrochemical Study of Glivec , 2006 .

[67]  M. C. U. Araujo,et al.  Microcystin-LR and chemically degraded microcystin-LR electrochemical oxidation. , 2012, The Analyst.

[68]  A. M. Brett,et al.  Electrochemical DNA Sensors for Detection of DNA Damage , 2005, Sensors (Basel, Switzerland).

[69]  A. Oliveira‐Brett,et al.  Lipoic acid-palladium complex interaction with DNA, voltammetric and AFM characterization. , 2009, Talanta.

[70]  V. Adam,et al.  An electrochemical DNA-based biosensor to study the effects of CdTe quantum dots on UV-induced damage of DNA , 2015, Microchimica Acta.

[71]  Yang-Kyu Choi and Chang-Hoon Kim Abstract Silicon Nanowire Biosensor for Cancer Markers : Yang-Kyu Choi and Chang-Hoon Kim , 2012 .

[72]  S. C. B. Oliveira,et al.  In situ electrochemical and AFM study of thalidomide-DNA interaction. , 2009, Bioelectrochemistry.