Simulation of land use changes using cellular automata and artificial neural network

This paper presents a method integrating artificial neural network (ANN) in cellular automata (CA) to simulate land use changes in Luxembourg and the areas adjacent to its borders. The ANN is used as a base of CA model transition rule. The proposed method shows promising results for prediction of land use over time. The ANN is validated using cross-validation technique and Receiver Operating Characteristic (ROC) curve analysis, and compared with logit model and a support vector machine approach. The application described in this paper highlights the interest of integrating ANNs in CA based model for land use dynamic simulation.

[1]  Zhiyong Hu,et al.  Modeling urban growth in Atlanta using logistic regression , 2007, Comput. Environ. Urban Syst..

[2]  Junlei Zhao,et al.  Woodland Cover Change Assessment Using Decision Trees, Support Vector Machines and Artificial Neural Networks Classification Algorithms , 2011, 2011 Fourth International Conference on Intelligent Computation Technology and Automation.

[3]  Lavalle Carlo,et al.  Sustainable Urban and Regional Planning. The MOLAND Activities on Urban Scenario Modelling and Forecast. , 2003 .

[4]  Qingyun Du,et al.  Urban growth pattern modeling using logistic regression , 2011, Geo spatial Inf. Sci..

[5]  C. Lee Giles,et al.  What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation , 1998 .

[6]  Philippe Trigano,et al.  An Approach for spatial and temporal data analysis: Application for mobility modeling of workers in Luxembourg and its bordering areas , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[7]  Xia Li,et al.  Cellular automata for simulating land use changes based on support vector machines , 2008, Comput. Geosci..

[8]  Daniel Müller,et al.  Land use dynamics in the central highlands of Vietnam: a spatial model combining village survey data with satellite imagery interpretation , 2002 .

[9]  M. Bossard,et al.  CORINE land cover technical guide - Addendum 2000 , 2000 .

[10]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[11]  Thierry Denoeux,et al.  Neural networks for process control and optimization: two industrial applications. , 2003, ISA transactions.

[12]  Tobia Lakes,et al.  Cropland change in southern Romania: a comparison of logistic regressions and artificial neural networks , 2009, Landscape Ecology.

[13]  J. Neumann The General and Logical Theory of Au-tomata , 1963 .

[14]  Paola Flocchini,et al.  On the relationship between fuzzy and Boolean cellular automata , 2011, Theor. Comput. Sci..

[15]  Richard Tay,et al.  Support vector machines for urban growth modeling , 2010, GeoInformatica.

[16]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[17]  Henning Sten Hansen Empirically Derived Neighbourhood Rules for Urban Land-Use Modelling , 2012 .

[18]  Bo Huang,et al.  Land-Use-Change Modeling Using Unbalanced Support-Vector Machines , 2009 .

[19]  O. Walther,et al.  Cross-Border Metropolitan Integration in Europe: The Case of Luxembourg, Basel, and Geneva , 2009 .

[20]  Fulong Wu,et al.  Calibration of stochastic cellular automata: the application to rural-urban land conversions , 2002, Int. J. Geogr. Inf. Sci..

[21]  Richard Aspinall,et al.  Modelling land use change with generalized linear models--a multi-model analysis of change between 1860 and 2000 in Gallatin Valley, Montana. , 2004, Journal of environmental management.

[22]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .

[23]  Roger White,et al.  The Use of Constrained Cellular Automata for High-Resolution Modelling of Urban Land-Use Dynamics , 1997 .

[24]  Danielle J. Marceau,et al.  Exploration of Spatial Scale Sensitivity in Geographic Cellular Automata , 2005 .

[25]  Thierry Denoeux,et al.  A neural network classifier based on Dempster-Shafer theory , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[26]  Molly Espey,et al.  Modeling Urban Sprawl and Land Use Change in a Coastal Area-- A Neural Network Approach , 2005 .

[27]  P. Gerber,et al.  Mobilités quotidienne et résidentielle au Luxembourg : un apercu à travers l'outil Mobilluxweb , 2008 .

[28]  Eric F. Lambin,et al.  Are agricultural land-use models able to predict changes in land-use intensity? , 2000 .

[29]  Itzhak Benenson,et al.  Geographic Automata Systems : From The Paradigm to the Urban Modeling Software , 2022 .

[30]  Qi Chen,et al.  A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones , 2011 .

[31]  Ying-Ming Wang,et al.  A comparison of neural network, evidential reasoning and multiple regression analysis in modelling bridge risks , 2007, Expert Syst. Appl..

[32]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[33]  Helen Couclelis,et al.  Cellular Worlds: A Framework for Modeling Micro—Macro Dynamics , 1985 .

[34]  M. Batty,et al.  Modeling urban dynamics through GIS-based cellular automata , 1999 .

[35]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .