An Analytic Approach to Smooth Polynominals over Finite Fields
暂无分享,去创建一个
[1] Joachim von zur Gathen,et al. Gauss periods: orders and cryptographical applications , 1998, Math. Comput..
[2] de Ng Dick Bruijn. On the number of positive integers $\leq x$ and free of prime factors $>y$ , 1951 .
[3] Manuel Blum,et al. How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[4] Taher ElGamal,et al. A public key cyryptosystem and signature scheme based on discrete logarithms , 1985 .
[5] G. Tenenbaum,et al. Integers without large prime factors , 1993 .
[6] C. Pomerance,et al. Rigorous discrete logarithm computations in finite fields via smooth polynomials , 1997 .
[7] Eric Bach,et al. Asymptotic semismoothness probabilities , 1996, Math. Comput..
[8] K. Dickman. On the frequency of numbers containing prime factors of a certain relative magnitude , 1930 .
[9] Mireille Car. Théorèmes de densité dans $F_q[X]$ , 1987 .
[10] G. Tenenbaum. Introduction to Analytic and Probabilistic Number Theory , 1995 .
[11] Whitfield Diffie,et al. New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.
[12] Andrew M. Odlyzko,et al. Discrete Logarithms in Finite Fields and Their Cryptographic Significance , 1985, EUROCRYPT.
[13] A. Odlyzko. Discrete Logarithms and Smooth Polynomials , 1993 .
[14] Gary L. Mullen,et al. Finite Fields: Theory, Applications and Algorithms , 1994 .