Aerosol optical depth from dual-view (A)ATSR satellite observations

Atmospheric aerosol particles play a critical role in the Earth’s radiation budget, yet the global radiative forcing by aerosols is widely recognized as a major uncertainty in our understanding of the climate [IPCC, 2007]. The radiative characteristics of aerosol particles are determined by their shape, size, total amount and chemical composition [Kaufman et al., 1997a]. Overall though, aerosols have a cooling effect at the Earth’s surface by reducing the amount of solar radiation arriving at the surface below the layer of aerosols in the atmosphere. This cooling effect by aerosols is achieved by increasing the planetary albedo at the top-of-the-atmosphere (TOA) through directly scattering some of incoming sunlight back into space. However, some of the radiation can also be absorbed in the atmosphere by aerosols and reemitted. The volcanic eruption of Mount Pinatubo in 1991 provides an excellent natural experiment to demonstrate the surface cooling effect of aerosols. In the following two years after the eruption the average global surface temperature was reduced by about half a degree Celsius, principally owing to the scattering of sunlight by volcanically enhanced stratospheric sulfate aerosol [Hansen et al., 1992]. In addition, to the direct influence that aerosols have on the climate system, aerosols have an indirect effect on the radiative forcing through their interaction with cloud droplets and influence on cloud albedo.

[1]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[2]  Makiko Sato,et al.  Potential climate impact of Mount Pinatubo eruption , 1992 .

[3]  R. J. Flowerdew,et al.  Retrieval of aerosol optical thickness over land using the ATSR‐2 Dual‐Look Satellite Radiometer , 1996 .

[4]  Peter R. J. North,et al.  Three-dimensional forest light interaction model using a Monte Carlo method , 1996, IEEE Trans. Geosci. Remote. Sens..

[5]  Chris Godsalve Simulation of ATSR-2 optical data and estimates of land surface reflectance using simple atmospheric corrections , 1996, IEEE Trans. Geosci. Remote. Sens..

[6]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[7]  Didier Tanré,et al.  Retrieval of land surface parameters from airborne POLDER bidirectional reflectance distribution function during HAPEX‐Sahel , 1997 .

[8]  M. Mishchenko,et al.  Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight , 1997 .

[9]  Y. Kaufman,et al.  Passive remote sensing of tropospheric aerosol and atmospheric , 1997 .

[10]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[11]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[12]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[13]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[14]  Gerrit de Leeuw,et al.  Retrieval of aerosol optical depth over land using two‐angle view satellite radiometry during TARFOX , 1998 .

[15]  Michael D. Steven,et al.  An atmospheric correction procedure for the ATSR-2 visible and near-infrared land surface data , 1998 .

[16]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[17]  Peter R. J. North,et al.  Retrieval of land surface bidirectional reflectance and aerosol opacity from ATSR-2 multiangle imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[18]  Philip B. Russell,et al.  Aerosol optical depth retrieval using ATSR-2 and AVHRR data during TARFOX , 1999 .

[19]  Alexander Smirnov,et al.  Comparisons of the TOMS aerosol index with Sun‐photometer aerosol optical thickness: Results and applications , 1999 .

[20]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[21]  A. M. Zavody,et al.  Cloud Clearing over the Ocean in the Processing of Data from the Along-Track Scanning Radiometer (ATSR) , 2000 .

[22]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[23]  J. Veefkind,et al.  Regional Distribution of Aerosol over Land, Derived from ATSR-2 and GOME , 2000 .

[24]  Yinon Rudich,et al.  Desert dust suppressing precipitation: A possible desertification feedback loop , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  B. Holben,et al.  Validation of MODIS aerosol optical depth retrieval over land , 2002 .

[26]  Thomas Holzer-Popp,et al.  Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements, 1, Method description , 2002 .

[27]  Peter R. J. North,et al.  Estimation of aerosol opacity and land surface bidirectional reflectance from ATSR‐2 dual‐angle imagery: Operational method and validation , 2002 .

[28]  Thomas Holzer-Popp,et al.  Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR‐2 radiometer measurements 2. Case study application and validation , 2002 .

[29]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[30]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[31]  Petr Chylek,et al.  Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval , 2003 .

[32]  David J. Diner,et al.  Comparison of MISR and AERONET aerosol optical depths over desert sites , 2003 .

[33]  W. V. Hoyningen-Huene,et al.  Retrieval of aerosol optical thickness over land surfaces from top‐of‐atmosphere radiance , 2003 .

[34]  Lorraine Remer,et al.  Effects of neglecting polarization on the MODIS aerosol retrieval over land , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[35]  O. Boucher,et al.  Global estimate of aerosol direct radiative forcing from satellite measurements , 2005, Nature.

[36]  Peter R. J. North,et al.  Radiative transfer modeling of direct and diffuse sunlight in a Siberian pine forest , 2005 .

[37]  Vladimir V. Rozanov,et al.  On the molecular-aerosol scattering coupling in remote sensing of aerosol from space , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[38]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[39]  David J. Diner,et al.  Comparison of coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer aerosol optical depths over land and ocean scenes containing Aerosol Robotic Network sites , 2005 .

[40]  Nadine Gobron,et al.  Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land , 2005 .

[41]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[42]  V. Ramanathan,et al.  Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations , 2005 .

[43]  J. Muller,et al.  The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces , 2005 .

[44]  Vladimir V. Rozanov,et al.  The solution of the vector radiative transfer equation using the discrete ordinates technique : Selected applications , 2006 .

[45]  S. Los,et al.  Computationally efficient method for retrieving aerosol optical depth from ATSR-2 and AATSR data. , 2006, Applied optics.

[46]  Peter R. J. North,et al.  Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: global validation and intersensor comparisons , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[47]  P. Crutzen Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? , 2006 .

[48]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. , 2006, Applied optics.

[49]  Y. Kaufman,et al.  The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest , 2006 .

[50]  David J. Diner,et al.  Aerosol source plume physical characteristics from space-based multiangle imaging , 2007 .

[51]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. , 2007, Applied optics.

[52]  R. Santer,et al.  A surface reflectance model for aerosol remote sensing over land , 2007 .

[53]  M. V. Ramana,et al.  Warming trends in Asia amplified by brown cloud solar absorption , 2007, Nature.

[54]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .

[55]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[56]  Brian Cairns,et al.  Long-Term Satellite Record Reveals Likely Recent Aerosol Trend , 2007, Science.

[57]  L. Guanter,et al.  A method for the atmospheric correction of ENVISAT/MERIS data over land targets , 2007 .

[58]  A. Kokhanovsky,et al.  Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments , 2007, Atmospheric Research.

[59]  A. Lacis,et al.  Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective , 2007 .

[60]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[61]  Xiangao Xia,et al.  Aerosol optical properties and their radiative effects in northern China , 2007 .

[62]  Stephen Plummer,et al.  The GLOBCARBON Cloud Detection System for the Along-Track Scanning Radiometer (ATSR) Sensor Series , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[63]  R. L. Curier,et al.  The inter-comparison of AATSR dual-view aerosol optical thickness retrievals with results from various algorithms and instruments , 2009 .

[64]  Alexander A. Kokhanovsky,et al.  DETERMINATION OF ATMOSPHERIC AEROSOL PROPERTIES OVER LAND USING SATELLITE MEASUREMENTS , 2009 .