Domain structure and organisation in extracellular matrix proteins.

Extracellular matrix (ECM) proteins are large modular molecules built up from a limited set of modules, or domains. The basic folds of many domains have now been determined by crystallography or NMR spectroscopy. Recent structures of domain pairs and larger tandem arrays, as well as of oligomerisation domains, have begun to reveal the principles underlying the higher order architecture of ECM proteins. Structural information, coupled with site-directed mutagenesis, has been instrumental in showing how adjacent domains can co-operate in ligand binding. Very recently, the first heterotypic ECM protein complexes have become available. Here, we review the advances of the last 5 years in understanding ECM protein structure, with special emphasis on those structures that have given insight into the biological functions of ECM proteins.

[1]  G L Hammond,et al.  Crystal structure of human sex hormone‐binding globulin: steroid transport by a laminin G‐like domain , 2000, The EMBO journal.

[2]  A. Lupas Coiled coils: new structures and new functions. , 1996, Trends in biochemical sciences.

[3]  R. Timpl,et al.  Crystal structure of the angiogenesis inhibitor endostatin at 1.5 Å resolution , 1998, The EMBO journal.

[4]  G. Schneider,et al.  Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. , 1999, Science.

[5]  R. Timpl,et al.  Structural basis for the high‐affinity interaction of nidogen‐1 with immunoglobulin‐like domain 3 of perlecan , 2001, The EMBO journal.

[6]  T. Springer,et al.  An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. , 1998, Journal of molecular biology.

[7]  I. Campbell,et al.  Solution Structure of the Link Module: A Hyaluronan-Binding Domain Involved in Extracellular Matrix Stability and Cell Migration , 1996, Cell.

[8]  P. Yurchenco,et al.  Form and function: The laminin family of heterotrimers , 2000, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  I. Campbell,et al.  Solution Structure of a Pair of Calcium-Binding Epidermal Growth Factor-like Domains: Implications for the Marfan Syndrome and Other Genetic Disorders , 1996, Cell.

[10]  H. Dietz,et al.  Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. , 1995, Human molecular genetics.

[11]  R. Liddington,et al.  Crystal Structure of the von Willebrand Factor A1 Domain and Implications for the Binding of Platelet Glycoprotein Ib* , 1998, The Journal of Biological Chemistry.

[12]  J. Engel,et al.  The triple helix ⇌ coil conversion of collagen‐like polytripeptides in aqueous and nonaqueous solvents. Comparison of the thermodynamic parameters and the binding of water to (L‐Pro‐L‐Pro‐Gly)n and (L‐Pro‐L‐Hyp‐Gly)n , 1977 .

[13]  T. Sasaki,et al.  Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. , 2000, Journal of molecular biology.

[14]  T. Sasaki,et al.  Structure and function of laminin LG modules. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[15]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[16]  M G Rossmann,et al.  Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. , 1997, Structure.

[17]  D. Mukhopadhyay,et al.  Cell surface glypicans are low-affinity endostatin receptors. , 2001, Molecular cell.

[18]  R. Huber,et al.  Crystal structure of three consecutive laminin-type epidermal growth factor-like (LE) modules of laminin gamma1 chain harboring the nidogen binding site. , 1996, Journal of molecular biology.

[19]  P Bork,et al.  Structure and distribution of modules in extracellular proteins , 1996, Quarterly Reviews of Biophysics.

[20]  R. Timpl,et al.  Structure of a novel extracellular Ca2+-binding module in BM-40 , 1996, Nature Structural Biology.

[21]  Madhusudan,et al.  Crystal structure of the von Willebrand factor A1 domain in complex with the function blocking NMC-4 Fab , 1998, Nature Structural Biology.

[22]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[23]  A. Koster,et al.  The Supramolecular Organization of Fibrillin-Rich Microfibrils , 2001, The Journal of cell biology.

[24]  Y. Muller,et al.  LG/LNS domains: multiple functions -- one business end? , 2001, Trends in biochemical sciences.

[25]  Hyesung Jeon,et al.  Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair , 2001, Nature Structural Biology.

[26]  R. Doolittle The multiplicity of domains in proteins. , 1995, Annual review of biochemistry.

[27]  T. Südhof,et al.  A stoichiometric complex of neurexins and dystroglycan in brain , 2001, The Journal of cell biology.

[28]  P. Bork,et al.  Merging extracellular domains: fold prediction for laminin G-like and amino-terminal thrombospondin-like modules based on homology to pentraxins. , 1998, Journal of molecular biology.

[29]  Ernest Fraenkel,et al.  Comparison of X-ray and NMR structures for the Antennapedia homeodomain–DNA complex , 1998, Nature Structural &Molecular Biology.

[30]  Andrei T. Alexandrescu,et al.  NMR structure of a parallel homotrimeric coiled coil , 1998, Nature Structural &Molecular Biology.

[31]  H. Hutter,et al.  Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. , 2000, Science.

[32]  R. Timpl,et al.  Calcium Affinity, Cooperativity, and Domain Interactions of Extracellular EF-hands Present in BM-40* , 2000, The Journal of Biological Chemistry.

[33]  R. Timpl,et al.  Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin , 1999, The EMBO journal.

[34]  D. Parry,et al.  α‐Helical coiled coils and bundles: How to design an α‐helical protein , 1990 .

[35]  William Arbuthnot Sir Lane,et al.  Endostatin: An Endogenous Inhibitor of Angiogenesis and Tumor Growth , 1997, Cell.

[36]  V. Malashkevich,et al.  The Crystal Structure of a Five-Stranded Coiled Coil in COMP: A Prototype Ion Channel? , 1996, Science.

[37]  J. Adams,et al.  Thrombospondins: multifunctional regulators of cell interactions. , 2001, Annual review of cell and developmental biology.

[38]  Richard O. Hynes,et al.  The Evolution of Cell Adhesion , 2000, The Journal of cell biology.

[39]  R. Kammerer,et al.  Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer , 2001, Nature Structural Biology.

[40]  Harold P. Erickson,et al.  2.0 Å Crystal Structure of a Four-Domain Segment of Human Fibronectin Encompassing the RGD Loop and Synergy Region , 1996, Cell.

[41]  J Engel,et al.  Structure and function of laminin: anatomy of a multidomain glycoprotein , 1990, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[42]  R. Kammerer,et al.  Electron microscopic structure of agrin and mapping of its binding site in laminin‐1 , 1998, The EMBO journal.

[43]  R. Kammerer,et al.  Interaction of agrin with laminin requires a coiled‐coil conformation of the agrin‐binding site within the laminin γ1 chain , 1999, The EMBO journal.

[44]  Jonathan Boyd,et al.  The hairpin structure of the 6F11F22F2 fragment from human fibronectin enhances gelatin binding , 2001, The EMBO journal.

[45]  R. Timpl,et al.  Structural and Genetic Analysis of Laminin‐Nidogen Interaction , 1998, Annals of the New York Academy of Sciences.

[46]  H M Berman,et al.  Hydration structure of a collagen peptide. , 1995, Structure.

[47]  V. Malashkevich,et al.  All‐trans retinol, vitamin D and other hydrophobic compounds bind in the axial pore of the five‐stranded coiled‐coil domain of cartilage oligomeric matrix protein , 1998, The EMBO journal.

[48]  W Baumeister,et al.  Hyperthermostable surface layer protein tetrabrachion from the archaebacterium Staphylothermus marinus: evidence for the presence of a right-handed coiled coil derived from the primary structure. , 1996, Journal of molecular biology.

[49]  D A Parry,et al.  Alpha-helical coiled coils: more facts and better predictions. , 1994, Science.

[50]  B. Berger,et al.  MultiCoil: A program for predicting two‐and three‐stranded coiled coils , 1997, Protein science : a publication of the Protein Society.

[51]  R. Berisio,et al.  Structural bases of collagen stabilization induced by proline hydroxylation. , 2001, Biopolymers.

[52]  M. Humphries,et al.  Integrin alpha 4 beta 1-mediated melanoma cell adhesion and migration on vascular cell adhesion molecule-1 (VCAM-1) and the alternatively spliced IIICS region of fibronectin. , 1994, The Journal of biological chemistry.

[53]  R. Liddington,et al.  Two conformations of the integrin A-domain (I-domain): a pathway for activation? , 1995, Structure.

[54]  R. Huber,et al.  Structure of the nidogen binding LE module of the laminin gamma1 chain in solution. , 1996, Journal of molecular biology.

[55]  R. Timpl,et al.  Crystal structure and mutational analysis of a perlecan-binding fragment of nidogen-1 , 2001, Nature Structural Biology.

[56]  I. Campbell,et al.  Localization and characterization of the hyaluronan-binding site on the link module from human TSG-6. , 2000, Structure.

[57]  Ronald T. Raines,et al.  Code for collagen's stability deciphered , 1998, Nature.

[58]  P. Handford Fibrillin-1, a calcium binding protein of extracellular matrix. , 2000, Biochimica et biophysica acta.

[59]  R. Timpl,et al.  Mapping of binding sites for nidogens, fibulin-2, fibronectin and heparin to different IG modules of perlecan. , 2001, Journal of molecular biology.

[60]  R. Kammerer,et al.  The laminin-binding domain of agrin is structurally related to N-TIMP-1 , 2001, Nature Structural Biology.

[61]  R. Timpl,et al.  Zinc-dependent dimers observed in crystals of human endostatin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  R. Timpl,et al.  Crystal structure of a pair of follistatin‐like and EF‐hand calcium‐binding domains in BM‐40 , 1997, The EMBO journal.

[63]  R. Timpl,et al.  Supramolecular assembly of basement membranes , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[64]  T. Sasaki,et al.  Variable zinc coordination in endostatin. , 2000, Journal of molecular biology.

[65]  R. Timpl,et al.  The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin. , 1999, Molecular cell.

[66]  Amit Kumar Sharma,et al.  Crystal structure of a heparin‐ and integrin‐binding segment of human fibronectin , 1999, The EMBO journal.

[67]  J. Couchman,et al.  Still More Complexity in Mammalian Basement Membranes , 2000, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[68]  K. Okuyama,et al.  Structure analysis of a collagen-model peptide with a (Pro-Hyp-Gly) sequence repeat. , 1999, Journal of biochemistry.

[69]  R. Huber,et al.  Site‐directed mutagenesis and structural interpretation of the nidogen binding site of the laminin gamma1 chain. , 1996, The EMBO journal.

[70]  Richard W. Farndale,et al.  Structural Basis of Collagen Recognition by Integrin α2β1 , 2000, Cell.

[71]  J. Deisenhofer,et al.  Regulation of LNS Domain Function by Alternative Splicing: The Structure of the Ligand-Binding Domain of Neurexin Iβ , 1999, Cell.

[72]  P. Handford,et al.  Solution structure of the transforming growth factor β‐binding protein‐like module, a domain associated with matrix fibrils , 1997, The EMBO journal.

[73]  F. Deák,et al.  The matrilins: a novel family of oligomeric extracellular matrix proteins. , 1999, Matrix biology : journal of the International Society for Matrix Biology.

[74]  R. Liddington,et al.  Crystal structure of the A domain from the a subunit of integrin CR3 (CD11 b/CD18) , 1995, Cell.

[75]  M. R. Adams,et al.  Comparative genomics of the eukaryotes. , 2000, Science.

[76]  E. Sage,et al.  SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. , 2001, The Journal of clinical investigation.

[77]  R. Timpl,et al.  Crystal structure and mapping by site‐directed mutagenesis of the collagen‐binding epitope of an activated form of BM‐40/SPARC/osteonectin , 1998, The EMBO journal.

[78]  M. Pericak-Vance,et al.  Missense mutation in a von Willebrand factor type A domain of the alpha 3(VI) collagen gene (COL6A3) in a family with Bethlem myopathy. , 1998, Human molecular genetics.

[79]  A. Spicer,et al.  Hyaluronan: a multifunctional, megaDalton, stealth molecule. , 2000, Current opinion in cell biology.

[80]  G. Mortier,et al.  Mutations in the region encoding the von Willebrand factor A domain of matrilin-3 are associated with multiple epiphyseal dysplasia , 2001, Nature Genetics.

[81]  R. Timpl,et al.  Structure of the C‐terminal laminin G‐like domain pair of the laminin α2 chain harbouring binding sites for α‐dystroglycan and heparin , 2000 .