Cut elimination in coalgebraic logics

We give two generic proofs for cut elimination in propositional modal logics, interpreted over coalgebras. We first investigate semantic coherence conditions between the axiomatisation of a particular logic and its coalgebraic semantics that guarantee that the cut-rule is admissible in the ensuing sequent calculus. We then independently isolate a purely syntactic property of the set of modal rules that guarantees cut elimination. Apart from the fact that cut elimination holds, our main result is that the syntactic and semantic assumptions are equivalent in case the logic is amenable to coalgebraic semantics. As applications we present a new proof of the (already known) interpolation property for coalition logic and newly establish the interpolation property for the conditional logics LCK and LCKID.

[1]  Grigori Mints,et al.  Gentzen-type systems and resolution rules. Part I. Propositional logic , 1990, Conference on Computer Logic.

[2]  Dirk Pattinson,et al.  Coalgebraic modal logic: soundness, completeness and decidability of local consequence , 2003, Theor. Comput. Sci..

[3]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[4]  Wolfgang Rautenberg,et al.  Modal tableau calculi and interpolation , 1983, J. Philos. Log..

[5]  Marc Pauly,et al.  A Modal Logic for Coalitional Power in Games , 2002, J. Log. Comput..

[6]  Rajeev Goré,et al.  Cut-free sequent and tableau systems for propositional Diodorean modal logics , 1994, Stud Logica.

[7]  Dirk Pattinson,et al.  How Many Toes Do I Have? Parthood and Number Restrictions in Description Logics , 2008, KR.

[8]  Lutz Schröder,et al.  A finite model construction for coalgebraic modal logic , 2006, J. Log. Algebraic Methods Program..

[9]  Dirk Pattinson,et al.  Rank-1 Modal Logics are Coalgebraic , 2007, J. Log. Comput..

[10]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[11]  Camilla Schwind,et al.  A sequent calculus and a theorem prover for standard conditional logics , 2007, TOCL.

[12]  Guido Governatori,et al.  Labelled Tableaux for Non-normal Modal Logics , 1999, AI*IA.

[13]  Sara Negri,et al.  Proof Analysis in Modal Logic , 2005, J. Philos. Log..

[14]  Luca Viganò,et al.  A New Method for Bounding the Complexity of Modal Logics , 1997, Kurt Gödel Colloquium.

[15]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[16]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[17]  Helle Hvid Hansen,et al.  A Coalgebraic Perspective on Monotone Modal Logic , 2004, CMCS.

[18]  Dirk Pattinson,et al.  Generic Modal Cut Elimination Applied to Conditional Logics , 2009, TABLEAUX.

[19]  Heinrich Wansing,et al.  Sequent Systems for Modal Logics , 2002 .

[20]  Martin Amerbauer,et al.  Cut-free tableau calculi for some propositional normal modal logics , 1996, Stud Logica.

[21]  Arnon Avron,et al.  Canonical Propositional Gentzen-Type Systems , 2001, IJCAR.

[22]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[23]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[24]  Helle Hvid Hansen,et al.  Tableau Games for Coalition Logic and Alternating-time Temporal Logic — theory and implementation , 2022 .

[25]  Kazushige Terui,et al.  Towards a Semantic Characterization of Cut-Elimination , 2006, Stud Logica.

[26]  João Rasga Sufficient conditions for cut elimination with complexity analysis , 2007, Ann. Pure Appl. Log..

[27]  Larisa Maksimova,et al.  Amalgamation and interpolation in normal modal logics , 1991, Stud Logica.

[28]  Dirk Pattinson,et al.  PSPACE Bounds for Rank-1 Modal Logics , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[29]  Alexander Kurz,et al.  Specifying Coalgebras with Modal Logic , 1998, CMCS.