Adaptive Locomotion on Uneven Terrains

The main advantage of legs over other modes of locomotion, like tracks and wheels, is adaptability to a large variety of terrains. Humanoids and other legged robots can potentially navigate stairs, scramble over rocks, step through thick K. Hauser ( ) Electrical and Computer Engineering (ECE); Mechanical Engineering and Materials Science (MEMS), Duke University, Durham, NC, USA e-mail: kris.hauser@duke.edu © Springer Science+Business Media B.V. 2017 A. Goswami, P. Vadakkepat (eds.), Humanoid Robotics: A Reference, https://doi.org/10.1007/978-94-007-7194-9_61-1 1

[1]  Atsuo Takanishi,et al.  Realization of biped walking on uneven terrain by new foot mechanism capable of detecting ground surface , 2010, 2010 IEEE International Conference on Robotics and Automation.

[2]  Ye Zhao,et al.  A three dimensional foot placement planner for locomotion in very rough terrains , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[3]  Satoshi Kagami,et al.  Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor , 2012, Int. J. Robotics Res..

[4]  Seth J. Teller,et al.  Drift-free humanoid state estimation fusing kinematic, inertial and LIDAR sensing , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[5]  Oskar von Stryk,et al.  Supervised footstep planning for humanoid robots in rough terrain tasks using a black box walking controller , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[6]  Tatsuo Arai,et al.  Rough terrain walking for bipedal robot by using ZMP criteria map , 2009, 2009 IEEE International Conference on Robotics and Automation.

[7]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[8]  Dennis W. Hong,et al.  Humanoid locomotion on uneven terrain using the time-varying divergent component of motion , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[9]  Eiichi Yoshida,et al.  Generation of whole-body optimal dynamic multi-contact motions , 2013, Int. J. Robotics Res..

[10]  François Keith,et al.  Dynamic Whole-Body Motion Generation Under Rigid Contacts and Other Unilateral Constraints , 2013, IEEE Transactions on Robotics.

[11]  Byoung-Tak Zhang,et al.  Online Learning of Uneven Terrain for Humanoid Bipedal Walking , 2010, AAAI.

[12]  Robert B. McGhee,et al.  Adaptive Locomotion of a Multilegged Robot over Rough Terrain , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Gordon Cheng,et al.  Simultaneous adaptation to rough terrain and unknown external forces for biped humanoids , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[14]  Maren Bennewitz,et al.  Anytime search-based footstep planning with suboptimality bounds , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[15]  Jean-Paul Laumond,et al.  Metastability for High-Dimensional Walking Systems on Stochastically Rough Terrain , 2013, Robotics: Science and Systems.

[16]  Sylvain Miossec,et al.  Planning contact points for humanoid robots , 2013, Robotics Auton. Syst..

[17]  Timothy Bretl,et al.  Motion Planning of Multi-Limbed Robots Subject to Equilibrium Constraints: The Free-Climbing Robot Problem , 2006, Int. J. Robotics Res..

[18]  Kris Hauser,et al.  Generalizations of the capture point to nonlinear center of mass paths and uneven terrain , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[19]  Qiang Huang,et al.  Humanoids walk with feedforward dynamic pattern and feedback sensory reflection , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[20]  Timothy Bretl,et al.  Motion Planning for Legged Robots on Varied Terrain , 2008, Int. J. Robotics Res..

[21]  Jessica K. Hodgins,et al.  Adjusting step length for rough terrain locomotion , 1991, IEEE Trans. Robotics Autom..

[22]  Jessica K. Hodgins,et al.  Slipping and Tripping Reflexes for Bipedal Robots , 1997, Auton. Robots.

[23]  Timothy Bretl,et al.  Using Motion Primitives in Probabilistic Sample-Based Planning for Humanoid Robots , 2008, WAFR.

[24]  Russ Tedrake,et al.  Whole-body motion planning with centroidal dynamics and full kinematics , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[25]  Pieter Abbeel,et al.  Motion planning with sequential convex optimization and convex collision checking , 2014, Int. J. Robotics Res..

[26]  Hirochika Inoue,et al.  Using visual odometry to create 3D maps for online footstep planning , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[27]  Maren Bennewitz,et al.  Autonomous climbing of spiral staircases with humanoids , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Atsuo Takanishi,et al.  Development of a dynamic biped walking system for humanoid - development of a biped walking robot adapting to the humans' living floor , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[29]  Shigeo Hirose,et al.  A Study of Design and Control of a Quadruped Walking Vehicle , 1984 .

[30]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[31]  Atsuo Takanishi,et al.  Terrain-adaptive control with small landing impact force for biped vehicle , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Timothy Bretl,et al.  Natural Motion Generation for Humanoid Robots , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Takeo Kanade,et al.  Footstep Planning for the Honda ASIMO Humanoid , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[34]  Shuuji Kajita,et al.  Adaptive Gait Control of a Biped Robot Based on Realtime Sensing of the Ground Profile , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[35]  Jessica K. Hodgins,et al.  Simulating balance recovery responses to trips based on biomechanical principles , 2009, SCA '09.

[36]  Aaron D. Ames,et al.  Human-inspired underactuated bipedal robotic walking with AMBER on flat-ground, up-slope and uneven terrain , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Johannes Garimort,et al.  Humanoid navigation with dynamic footstep plans , 2011, 2011 IEEE International Conference on Robotics and Automation.

[38]  Masayuki Inaba,et al.  Vision-based 2.5D terrain modeling for humanoid locomotion , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[39]  Jessy W. Grizzle,et al.  A Finite-State Machine for Accommodating Unexpected Large Ground-Height Variations in Bipedal Robot Walking , 2013, IEEE Transactions on Robotics.

[40]  Jin Tak Kim,et al.  Impedance control for biped robot walking on uneven terrain , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[41]  Masatoshi Ishikawa,et al.  High-speed bipedal robot running using high-speed visual feedback , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[42]  Alfred A. Rizzi,et al.  Autonomous navigation for BigDog , 2010, 2010 IEEE International Conference on Robotics and Automation.

[43]  Katie Byl,et al.  Approximate optimal control of the compass gait on rough terrain , 2008, 2008 IEEE International Conference on Robotics and Automation.

[44]  Satoshi Kagami,et al.  Walking control on uneven terrain with short cycle pattern generation , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.